Зрение рыбы – как видит рыба?

Что видят рыбы

Наши пресноводные рыбы — лещ, судак, сом, налим— чаще охотятся ночью. Им нужно хорошо видеть в темноте. И природа позаботилась об этом. У леща и судака в сетчатой оболочке глаз находится светочувствительное вещество, а у сома и налима имеются даже специальные пучки нервов, воспринимающие самые слабые световые лучи.

Зрение рыбы — как видит рыба?

Зрение рыбы, как она видит, в статье кроткий экскурс, рыбаку это важно знать.

Много уже было сказано и показано о том, что рыбалка – это целый комплекс знаний и умений, благодаря которым можно рассчитывать на хороший улов. Именно знаний поведения рыбы, её физиологических особенностей и поведенческой реакции. Что обычно наблюдаю я в рыболовном магазине, когда начинающий рыбак советуется с продавцом по поводу предстоящей рыбалки и приобретения снастей? Чаще всего, клиенту просто продают снасти, делая акцент на новинки, на самые передовые разработки, благодаря которым человек останется с уловом. И люди покупают массу всего, порой даже совершенно не нужных снастей, поверив в то, что рыбалка для них будет удачной. Но, если бы всё было так просто.

Можно прийти на водоем оснащенным по последнему слову «техники», и так же с пустым садком через какое-то время уйти. В чем причина? А причин множество – это и умение правильно выбрать место, и правильно настроить снасть, подобрать наживку и насадки и ещё много чего. Но одним из главных правил, которым почему-то многие рыбаки пренебрегают, является то, что они не учитывают факта наличия зрения у рыбы.

Рыбак подходит к берегу, готовит снасть, прикармливает место, делает заброс, но результат его почему-то не радует. А на самом деле, всё очень легко объяснить. Просто, когда Вы подходили к берегу, рыба Вас заметила, а всё «новое» на берегу настораживает и пугает трофейный экземпляр, который в данном примере предпочитает «перейти» на другое место или затаиться в укрытии. Рыбак должен понимать, что водная среда создает определенные условия для зрения рыбы – она прекрасно видит практически всё, что расположено спереди, с боков, и сверху. Естественно, под определенным углом, т.е. есть так называемые «слепые» участки, где рыба не в состоянии что-либо разглядеть.

Но следует понимать, что рыба в состоянии изменить свое положение в воде (что она и делает), тем самым изменив угол обзора и получив необходимую информацию. В общем случае, все предметы расположенные над рыбой, она видит и различает прекрасно, а по мере смещения объекта к линии горизонта и удаления его от рыбы – зрительное восприятие ухудшается. Именно поэтому, когда Вы решили обловить перспективное место, не стоит сразу подходить к берегу и стараться сделать заброс, как можно дальше. В этой ситуации нужно сначала попробовать обловить прибрежную территорию, не подходя к берегу, а уже после, когда Вы убедились, что рыбы рядом нет, можно тихонько подойти к берегу и аккуратно облавливать интересный участок дальше.

Интересно, что благодаря преломляющему свойству воды, рыба способна видеть объекты, которые как бы скрыты от неё. Например, находясь ниже горизонтали береговой линии, рыба видит человека, который подходит к берегу, когда угол светового луча превысит значение в 40-50 градусов к водной глади.

Но, даже если рыбак присел на берегу, затаился и рыба его не видит, нужно соблюдать тишину, так как в этом случае рыба ощущает вибрации боковой линией, которая играет очень важную роль в жизни рыб. Эти нюансы нужно учитывать рыбаку и использовать в рыбалке. Например, если рыбак одет в яркую одежду и сразу приближается к берегу, он будет замечен рыбой, а необычный цвет её насторожит. С другой стороны, если одеться в камуфляжную одежду (в соответствии с временем года), медленно приближаться к берегу, идти против течения (так как хищные рыбы часто «стоят» головой против течения), с хвоста рыбы, и не топать (так как вибрации рыба улавливает боковой линией), то шансы поймать щуку, например, увеличиваются в разы. В статье я не стал рассказывать о строении глаза рыбы и других физиологических моментах, так как для рядового рыбака достаточно знать всего лишь несколько правил:

1.Одежда на рыбалке не должна быть яркой

2.Сразу к водной кромке не подходить

3.Как можно меньше шуметь

4.Помнить, что рыба стоит головой против течения

Соблюдая эти простые правила, можно хоть как-то «сделать» шаг к успешной рыбалке, не прибегая к каким-то хитрым методикам и уловкам.

3.Как можно меньше шуметь

Зрение пресноводных рыб

Новицкий Р. | 15 июля 2005 г.

Стопроцентной уверенности в том, как именно протекает жизнь под поверхностью воды, у нас нет. О том, как реагирует та или иная рыба на различные раздражители, каким образом она отыскивает приманку и что останавливает ее от решительной поклевки, мы судим косвенно – по результатам рыбалки, наличию-отсутствию “хваток” и сходов и т. д., и т. п.

Для того, чтобы эффективно применять свой рыболовный опыт в противостоянии с обитателями наших водоемов, современный рыболов- любитель или спортсмен обязан обладать немалым багажом знаний, полученных благодаря неоднократным личным наблюдениям или почерпнутых из достоверных научных источников.

В настоящей статье мы продолжаем разговор об органах чувств рыб и их неравнозначной роли в жизни подводных обитателей (см. “СР” №№ 2 и 8 за 2002 г., № 2 за 2003 г. и № 2 за 2004 г.).

Об органах чувств рыб

В истории развития человеческой цивилизации особое внимание изучению рыб начали уделять в IV веке до н. э. Фактически ихтиология как наука о рыбах началась с Аристотеля (384-322 гг. до н. э.), который сделал первые попытки классифицировать огромное разнообразие обитателей царства Нептуна и описывал биологию и анатомию многих видов рыб.

За две с половиной тысячи лет рыб изучили достаточно подробно, но естествоиспытатели II-XIX-го веков, описывающие в своих научных трудах подводных жителей рек, морей и океанов, были искренне уверены в том, что рыбы – это очень примитивные, глупые существа, которые не обладают ни слухом, ни осязанием, ни даже какой-либо памятью. Кстати, эти, в корне неверные, воззрения сохранялись в научной среде вплоть до 1940-х годов.

В настоящее время практически любой “литературно подкованный” рыболов, не говоря уже об ученых-ихтиологах, знает, для чего у рыб существует боковая линия, могут ли рыбы слышать или обонять, с помощью чего они отыскивают корм или чувствуют приближение хищника.

Общеизвестно, что органы чувств или, как принято их сейчас называть – сенсорные системы, дают возможность живому организму воспринимать разнообразную информацию об окружающем мире, а также сигнализировать о внутреннем состоянии самого организма.

Органы чувств рыб способны:

– воспринимать электромагнитные поля в видимой (зрение) и инфракрасной (температурная чувствительность) областях спектра;

– ощущать механические возмущения, или звуковые волны (слух),

– чувствовать силу тяжести (вестибулярная и гравитационная чувствительность) и механическое давление (осязание);

– распознавать разнообразные химические сигналы – восприятие веществ в жидкой фазе (вкус) и в газовой фазе (обоняние).

К сенсорным системам рыб можно отнести зрительную, слуховую, вкусовую, обонятельную, осязательную, электрорецепторную сенсорные системы, а также сейсмосенсорную систему, представленную боковой линией, общее химическое чувство.

К одним из самых значимых органов чувств у животных относится зрение – это способность воспринимать электромагнитные поля в видимой области спектра.

При помощи зрительных анализаторов рыбы ориентируются в пространстве, находят пищу или избегают хищников, занимают соответствующие экологические ниши, визуально оценивая характер зрительного окружения (Beur, Heuts, 1973).

Популярно о строении глаза рыб

Рыбы видят (воспринимают свет) в водной среде при помощи глаз и особых светочувствительных почек. Особенности видения рыб под водой обусловлены прозрачностью вод, их вязкостью и плотностью, глубиной, скоростями течений, способом жизни и питания.

По сравнению с наземными животными и человеком, рыбы более близоруки. Роговица их глаз плоская, а хрусталик шаровидный. Именно его форма и обуславливает близорукость у рыб. У многих рыб хрусталик может выступать из отверстия зрачка, благодаря чему увеличивается поле зрения.

Вещество хрусталика такой же плотности как и вода, в результате свет, проходя через него, не преломляется и на сетчатке глаза получается четкое изображение.

Сетчатка глаза (внутренняя оболочка) имеет сложное строение, состоит из четырех слоев: пигментного, светочувствительного (так называемые палочки и колбочки) и двух слоев нервных клеток, дающих начало зрительному нерву.

Роль палочек – функционирование в сумерках и ночью, причем они нечувствительны к цвету. При помощи колбочек рыбы воспринимают различные цвета.

Зрачок практически у всех видов неподвижен, однако камбалы, речной угорь, акулы и скаты в состоянии его сужать и расширять, увеличивая остроту зрения.

Особенности зрения у разных рыб

У большинства рыб движения глаз скоординированы, только у некоторых (зеленушка, калкан, морской язык и др.) они могут двигаться независимо друг от друга. У хищных рыб глаза наиболее подвижны.

У наших морских и пресноводных рыб органы зрения – глаза – расположены по бокам головы, причем каждый глаз видит свое поле зрения. Такое зрение называется монокулярным. Спереди монокулярное зрение каждого глаза перекрывается, появляется зона бинокулярного зрения. Угол бинокулярного зрения у рыб очень мал – не более 30?.

Известный американский ученый Роберт Вуд показал, как рыбы могут видеть из воды. По законам преломления световых лучей, предметы, находящиеся на суше, кажутся рыбе выше, чем на самом деле. Если смотреть из воды в сторону берега под углом к вертикали больше чем 45°, то из-за полного внутреннего отражения от поверхности воды наблюдателю (рыбе) становятся видны объекты (рыболов). Стоящий на берегу рыболов представляется ей висящим в воздухе и четко различимым, но сидящего человека рыба не заметит, так как под малым углом наклона лучей к горизонту (менее 45?) наземные объекты ей невидимы.

Подавляющее большинство пресноводных рыб видят максимум на 1 м. В прозрачной воде (например, в наших водохранилищах зимой) рыбы практически могут видеть на расстоянии 10-12 м, однако четко различают предметы, их форму, цвет в пределах 1-1,5 м. При аккомодации глаза с передвижением хрусталика глаз настраивается на расстояние, не превышающее 15 метров. Это предел дальности зрения рыб.

Согласно экспериментальным исследованиям, речной окунь в состоянии видеть предмет величиной 1 см на расстоянии около 5,5 метров. При уменьшении размеров предмета в 10 раз расстояние видения его хищником пропорционально уменьшалось – окунь видел предмет за 55 см. Крохотный объект величиной 0,1 мм хищник видел только за 5,5 см.

Ихтиологи различают светолюбивых (дневных) и сумеречных рыб. У дневных видов в сетчатке глаза палочек немного, зато колбочки большие. Эти рыбы (щука, плотва, голавль, жерех и др.) хорошо различают цвета – красный, синий, желтый, белый. У сумеречных рыб (судак, налим, сом, ) в сетчатке находятся только палочки, и, следовательно, различать цвета и их оттенки они не в состоянии.

Глаза как орган зрения хорошо развиты у светолюбивых рыб (щука, чехонь, красноперка) и некоторых сумеречных видов (лещ, ерш, густера, налим). У других сумеречных рыб (придонных) – карпа, карася и линя – глаза развиты хуже (Протасов, 1968). В связи с этим у светолюбивых рыб ориентация и поиск в пространстве, питание могут осуществляться преимущественно с помощью зрения, а у сумеречных – главным образом благодаря органам осязания и других сенсорных систем.

У пелагических планктофагов (белый толстолобик, чехонь) поиск пищи осуществляется практически полностью благодаря зрению.

Способность рыб различать цвета. Дневные рыбы достаточно хорошо различают цвета, по крайней мере, спиннингисты об этом знают, применяя при разной освещенности белый виброхвост или бело-красный твистер в охоте на щуку или окуня. Черноморская хамса на фоне сине-зеленой воды различает (видит) сети разной окраски на следующем расстоянии: сине-зеленые – 0,5-0,7 метров; темно-синие – 0,8-1,2 м; темно-коричневые – 1,3-1,5 м; серые или черные – 1,5-2,0 м; белые (неокрашенные) – 2,0-2,5 м.

Сумеречные и ночные рыбы, как было отмечено выше, различать цвета не в состоянии, поэтому рыболовы-спортсмены и любители при экспериментировании с приманками должны уделять особое внимание не цвету приманки, а ее поведению (лобовому сопротивлению, шумовым характеристикам).

Применение специально ярко окрашенных приманок для ловли сумеречных хищников (тех же судака или сома) автору представляется неоправданным, так как эта рыба реагирует не на цвет некоего “Предатора”, а только на его гидродинамические качества, корректируя предстоящий бросок видением (благодаря отличному сумеречному – черно-белому – зрению) абриса приманки. Причем чем ярче ее силуэт на фоне усеянного камнями дна (белое – на черном, флуоресцентное на черном), тем большее количество хваток и поимок хищника отметит спиннингист при применении одинаковых приманок, но разных расцветок. И снова решающее для броска судака значение будет иметь белый или желтый цвет приманки, а уж никак не фиолетовые, например, разводы на зеленом фоне воблера (если, конечно, это не супернеотразимая, гремяще-звенящая модель).

Зрительное восприятие рыбами движений. Российские ученые исследовали способности зрительного аппарата рыб восприятия движения. Для этого наблюдали за оптомоторной реакцией рыб на последовательно движущиеся полосы или детали обстановки в течение 1 секунды (определение величины оптических моментов). Были получены следующие результаты.

Оптический момент у верховки и карася составил 1/14 – 1/18 секунды, щуки и линя – 1/25 – 1/28 с, леща и окуня – 1/55 с. Рыбы, имеющие оптические моменты от 1/50 до 1/67 с, способны вдвое детальнее воспринимать одно и то же движение, чем человек, а рыбы, имеющие оптический момент 1/10 – 1/14, – вдвое менее детально.

Тонкое восприятие движения зрительным аппаратом рыб позволяет жертвам уловить начальный момент броска и ускользнуть от хищника. Для мирных рыб сигналом предстоящего броска хищника являются подергивание и вибрирование спинных и грудных плавников, а также всего тела охотника, улавливаемые глазом потенциальной жертвы (Протасов, 1968).

Сытые и утомленные рыбы имеют слабо выраженную оптомоторную реакцию (реакцию на движение), а голодные и хорошо отдохнувшие – сильно выраженную реакцию.

Органы чувств рыб в пищевом поведении рыб

Представляют интерес для рыболова также и экспериментально полученные и проверенные в естественных условиях результаты поочередного функционирования органов чувств рыб при поиске ими кормовых объектов.

Во время “свободного поиска”, когда расстояние до кормового объекта превышает 100 м, у рыб “работает” только обоняние, остальные сенсорные системы не задействованы. При приближении к источнику “вкусного” запаха от 100 до 25 м к обонянию подключается слух. На расстоянии от 25 до 5 м рыба пытается найти корм при помощи обоняния, зрения и слуха.

Когда до пищи остается “рукой подать” (от 5 до 1 м), рыба в первую очередь пользуется зрением, затем обонянием и слухом. На расстоянии от 1 до 0,25 м в поиск вовлекаются одновременно зрение, слух, боковая линия, обоняние, наружная вкусовая чувствительность (ощупывание грунта усиками, касания губами, рылом, даже плавниками).

Когда еда “под носом” и расстояние до нее не превышает 0,25 м, рыба “включает” практически все органы чувств: зрение, боковую линию, электрорецепцию, наружную вкусовую чувствительность, общее химическое чувство, осязание. Их совместная работа быстро приводит к обнаружению рыбой корма.

Поведение хищных рыб в зависимости от особенностей зрения

По отношению к периоду наибольшей пищевой активности применяют такое разделение хищных рыб: окунь – сумеречно-дневной хищник, щука – сумеречный, судак – глубокосумеречный.

Окуни-ихтиофаги и щуки питаются круглосуточно: днем охотятся за добычей из засады, в сумерках и на рассвете выходят на открытую воду и преследуют жертв. “Сумеречное” питание хищников происходит при освещенности от сотен до десятых долей люксов (вечером) и наоборот (утром). В этот период у окуня и щуки функционирует дневное зрение с максимальной остротой и дальностью видения, а плотные стаи рыб-жертв начинают распадаться, обеспечивая удачную охоту хищникам. С наступлением темноты отдельные рыбешки рассредоточиваются по акватории, верховка и уклейка при падении освещенности ниже 0,01 лк опускаются на дно и замирают. Охота хищных рыб прекращается.

В предутренние часы при освещенности от десятых долей до сотен люксов “избиение младенцев” продолжается до момента, когда рыбы-жертвы образуют плотные оборонительные стаи.

Согласно исследованиям ихтиологов, летом продолжительность утреннего питания хищников достигала 3 часов, вечернего – 4 часа и ночного (судак) – 5-6 часов.

Судак может пользоваться зрением в тех условиях, когда другие рыбы видеть не могут. Сетчатка глаза хищника содержит сильно отражающий свет пигмент – гуанин, который увеличивает ее чувствительность. Охота судака за мелкими стайными рыбами наиболее успешна при глубоко сумеречной освещенности – 0,001 и 0,0001 лк.

Осенью, в пасмурную и дождливую погоду, когда освещенность изменяется незначительно, молодь мирных рыб образует разреженные оборонительные стаи и хищники могут успешно охотиться на протяжении всего дня, а не только в сумерках. Происходит так называемый “осенний жор” хищника.

Подмечена интересная особенность охоты щуки и окуня на свету и при высокой прозрачности воды. В дневное время эти рыбы выступают как типичные хищники-засадчики: при неудачном захвате добычи из засады они не преследуют ее, чтобы не отпугнуть других потенциальных жертв от места охоты. Те районы, где затаился хищник, обнаруживший азартом свое место укрытия, стайки рыб обходят стороной. Поэтому днем щука или окунь делают четко выверенный и точный бросок только при возможности 100%-го захвата добычи. Решающую роль в удачном броске играет зрение.

Таким образом, зная об особенностях и возможностях зрительного восприятия рыб, рыболовы получают возможность осуществлять на водоеме целенаправленный поиск будущего подводного “спарринг-партнера”. Знание сильных и слабых сторон противника (читай – возможностей зрения рыб в морской и пресной воде, днем и в сумерках), надеюсь, помогут многочисленным поклонникам рыбной ловли выходить победителем из этой увлекательнейшей и честной схватки.

Сумеречные и ночные рыбы, как было отмечено выше, различать цвета не в состоянии, поэтому рыболовы-спортсмены и любители при экспериментировании с приманками должны уделять особое внимание не цвету приманки, а ее поведению (лобовому сопротивлению, шумовым характеристикам).

Зрение рыбы – как видит рыба?

Органы чувств. Зрение.

Орган зрения — глаз по своему устройству напоминает фотографический аппарат, причем хрусталик глаза подобен объективу, а сетчатка — пленке, на которой получается изображение. У наземных животных хрусталик имеет чечевицеобразную форму и способен изменять свою кривизну, поэтому животные могут приспосабливать зрение к расстоянию.

Хрусталик у рыб шарообразный и не может менять форму. Зрение их перестраивается на различные расстояния при приближении или удалении хрусталика от сетчатой оболочки.

Оптические свойства водной среды не позволяют рыбе видеть далеко. Практически пределом видимости у рыб в прозрачной воде считают расстояние 10—12 м, а ясно рыбы видят не далее 1,5 м.

Лучше видят дневные хищные рыбы, живущие в прозрачной воде (форель, хариус, жерех, щука). Некоторые рыбы видят в темноте (судак, лещ, сом, угорь, налим). У них в сетчатке глаза есть особые светочувствительные элементы, способные воспринимать слабые световые лучи.

Угол зрения рыб очень велик. Не поворачивая тела, большинство рыб способно видеть каждым глазом предметы в зоне около 150° по вертикали и до 170° по горизонтали (рис. 1).

Иначе видит рыба предметы, находящиеся над водой. В этом случае вступают в силу законы преломления световых лучей, и рыба может видеть без искажения лишь предметы, которые находятся прямо над головой— в зените.

Читайте также:  Мышь на тайменя

Наклонно падающие световые лучи преломляются и сжимаются в угол 97°,6 (рис. 2).

Чем острее угол входа светового луча в воду и ниже предмет, тем более искаженным видит его рыба. При падении светового луча под углом 5—10°, особенно если водная поверхность неспокойна, рыба перестает видеть предмет.

Лучи, идущие от глаза рыбы вне конуса, изображенного на рис. 2, полностью отражаются от водной поверхности, поэтому она представляется рыбе зеркальной.

С другой стороны, преломление лучей позволяет рыбе видеть как бы скрытые предметы. Представим себе водоем с крутым обрывистым берегом (рис. 3).вне преломления лучей водной поверхностью может увидеть человека.

Рыбы различают цвета и даже оттенки.

Цветовое зрение у рыб подтверждается их способностью изменять окраску в зависимости от цвета грунта (мимикрия). Известно, что окунь, плотва, щука, которые держатся на светлом песчаном дне, имеют светлую окраску, а на черном торфяном дне — более темную.

Особенно ярко выражена мимикрия у различных камбал, способных с изумительной точностью приспосабливать свою окраску к цвету грунта. Если камбалу пустить в стеклянный аквариум, под дно которого подложить шахматную доску, то на спине у нее появятся клетки, подобные шахматным.

В природных условиях камбала, лежащая на галечном дне, настолько сливается с ним, что становится совершенно незаметной для человеческого глаза. В то же время ослепшие рыбы, в том числе и камбала, не меняют своего цвета и остаются темно-окрашенными. Отсюда ясно, что изменение рыбами окраски связано с их зрительным восприятием.

Опыты кормления рыб из разноцветных чашечек подтвердили, что рыбы отчетливо воспринимают все спектральные цвета и могут различать близкие оттенки. Новейшие опыты, основанные на спектрофотометрических методах, показали, что многие виды рыб воспринимают отдельные оттенки не хуже человека.

Методами пищевой дрессировки установлено, что рыбы воспринимают и форму предметов — отличают треугольник от квадрата, куб от пирамиды.

Известный интерес представляет отношение рыб к искусственному свету. Еще в дореволюционной литературе писали о том, что костер, разведенный на берегу реки, привлекает плотву, налимов, сомов и улучшает результаты ловли.

Последние исследования показали, что многие рыбы — килька, кефаль, сырть, сайра — направляются к источникам подводного освещения, поэтому в настоящее время электрический свет используют в промысловой ловле. В частности, этим способом успешно ловят кильку на Каспии, а сайру у Курильских островов.

Попытки применить электрический свет в спортивной ловле пока не дали положительных результатов. Проводились такие опыты зимой в местах скопления окуня и плотвы. Во льду прорубали лунку и ко дну водоема опускали электролампу с рефлектором.

Затем производили ловлю на мормышку с подсадкой мотыля в соседней лунке и в лунке, вырубленной в стороне от источника света. Оказалось, что количество поклевок вблизи лампы меньше, чём вдали от нее. Аналогичные опыты производились при ловле судака и налима ночью; они также не дали положительного эффекта.

Для спортивной ловли рыбы заманчиво использование приманок, покрытых светящимися составами. Установлено, что рыбы схватывают светящиеся приманки. Однако опыт ленинградских рыболовов не показал их преимуществ; обычные приманки рыбы во всех случаях берут охотнее.

Литература по данному вопросу также не убедительна. В ней описываются только случаи поимки рыб на светящиеся приманки, а сравнительных данных о ловле в тех же условиях на обычные приманки не приводится.

В итоге надо считать, что целесообразность использования света и светящихся приманок на ловле еще окончательно не выяснена и необходимо дальнейшее детальное изучение этого вопроса.

Особенности зрения рыб позволяют сделать некоторые выводы, полезные для рыболова. Можно с уверенностью сказать, что находящаяся у поверхности воды рыба не в состоянии видеть стоящего на берегу рыболова далее 8—10 м и сидящего или ловящего взабродку — далее 5—6 м; имеет значение при этом и прозрачность воды.

Практически можно считать, что если рыболов не видит рыбу в воде, когда смотрит на хорошо освещенную водную поверхность под углом, близким к 90°, то и рыба не видит рыболова.

Поэтому маскировка имеет смысл только при ловле на мелких местах или поверху в прозрачной воде и при забросе на небольшое расстояние. Наоборот, предметы снаряжения рыболова, близкие к рыбе (поводок, грузило, сачок, поплавок, лодка), должны сливаться с окружающим фоном.

Наличие слуха у рыб долгое время отрицалось. Такие факты, как подход рыб по звонку к месту кормежки, привлечение сомов ударами по воде особой деревянной колотушкой («клочение» сомов), реакция на свисток парохода, еще мало что доказывали. Возникновение реакции могло объясняться раздражением других органов чувств.

Новейшие опыты показали, что рыбы реагируют на звуковые раздражения, причем эти раздражения воспринимаются и слуховыми лабиринтами, имеющимися в голове рыб, и поверхностью кожи, и плавательным пузырем, играющим роль резонатора.

Какова чувствительность звуковых восприятий у рыб, точно не установлено, но доказано, что они улавливают звуки хуже человека, причем высокие тона рыбы слышат лучше, чем низкие.

Звуки, возникающие в водной среде, рыбы слышат на значительном расстоянии, а звуки, возникающие в воздушной среде, слышат плохо, так как звуковые волны отражаются от поверхности и плохо проникают в воду. Учитывая эти особенности, рыболов должен остерегаться шуметь в воде, но может не опасаться напугать рыбу, громко разговаривая.

Интересно использование звуков в спортивной ловле. Однако вопрос о том, какие звуки привлекают рыб, а какие отпугивают, не изучен. Пока звук используют лишь при ловле сомов, «клочением».

Орган боковой линии.

Орган боковой линии есть только у рыб и земноводных, постоянно живущих в воде. Боковая линия чаще всего представляет собой канал, который тянется вдоль туловища от головы до хвоста. В канале разветвляются нервные окончания, с большой чувствительностью воспринимающие даже самые незначительные водные колебания.

При помощи этого органа рыбы определяют направление и силу течения, ощущают токи воды, образующиеся при смывании подводных предметов, чувствуют движение соседа в стае, врагов или добычи, волнение на поверхности воды. Кроме того, рыба воспринимает и колебания, которые передаются воде извне — сотрясение почвы, удары по лодке, взрывную волну, вибрацию корпуса парохода и т. п.

Подробно изучена роль боковой линии в схватывании рыбой добычи. Многократно поставленные опыты показали, что ослепленная щука хорошо ориентируется и безошибочно схватывает движущуюся рыбку, не обращая внимания на неподвижную.

Слепая щука с разрушенной боковой линией теряет способность ориентации, натыкается на стенки бассейна и. будучи голодной, не обращает внимания на плавающую рыбку.

Учитывая это, рыболов должен вести себя осторожно и на берегу и в лодке. Сотрясение почвы под ногами, волна от неаккуратного движения в лодке могут насторожить и надолго распугать рыбу.

Не безразличен для успеха ловли характер движения в воде искусственных приманок, так как хищники при преследовании и схватывании добычи ощущают создаваемые ею водные колебания. Уловистее, безусловно, окажутся те приманки, которые наиболее полно воспроизводят признаки обычной добычи хищников.

Органы обоняния и вкуса.

Органы обоняния и вкуса у рыб разделены. Органом обоняния у костистых рыб служат парные ноздри, расположенные по обеим сторонам головы и ведущие в носовую полость, выстланную обонятельным эпителием.

В одно отверстие вода входит, а из другого выходит. Такое устройство органов обоняния позволяет рыбе ощущать запахи растворенных или взвешенных в воде веществ, причем на течении рыба может чувствовать запахи только по струе, несущей пахучее вещество, а в тиховодье — только при наличии токов воды.

Орган обоняния слабее всего развит у дневных хищных рыб (щука, жерех, окунь), сильнее — у ночных и сумеречных рыб (угорь, сом, карп, линь).

Вкусовые органы расположены в основном во рту и глоточной полости; у одних рыб вкусовые сосочки находятся в области губ и усов (сом, налим), а иногда расположены по всему телу (сазан). Как показывают опыты, рыбы способны различать сладкое, кислое, гор ” кое и соленое. Так же, как и обоняние, чувство вкуса сильнее развито у ночных рыб.

В литературе имеются указания о целесообразности добавлять в прикормку и насадку различные пахучие вещества, будто бы привлекающие рыбу: мятное масло, камфару, анисовые, лавро-вишневые и валерьяновые капли, чеснок и даже керосин.

Неоднократное использование этих веществ в корме не показало сколько-нибудь заметного улучшения клева, а при большом количестве пахучих веществ, наоборот, рыба почти совсем переставала ловиться. Аналогичный результат дали опыты, поставленные над аквариумными рыбами, которые неохотно ели корм, смоченный анисовым маслом, валерьянкой и т. п.

Вместе с тем естественный запах свежей прикормки, особенно конопляного жмыха, конопляного и подсолнечного масла, ржаных сухарей, свежесваренной каши, без сомнения, привлекает рыбу и ускоряет ее подход к кормушке.

Значение тех или иных органов чувств при отыскании пищи различными рыбами показано в табл. 1.

Органы чувств. Зрение.

Особенности строения органов зрения у рыб

Если рыба мелкая и питающаяся взвешенными в воде организмами, то и зрение её приспособлено рассматривать мелкие, даже микроскопические объекты на небольшом расстоянии. А вот донные рыбы, обычно двигающиеся по самому дну и часто в полумраке и в мутной водичке, муть которой они же сами и подняли со дна, могут видеть не очень хорошо, но пользоваться для поиска преимущественно обонянием и осязанием. Например, карповые — сазаны, карпы, и другие — двигаясь по дну, ощупывают слой ила перед собой своими длинными усами, очень чувствительно реагируя на всякие живые движущиеся в иле организме: моллюсков, червей, рачков, и немедленно выдвигая в нужный момент рот-трубку, чтобы засосать найденную добычу.

Теперь им необходимо давать небольшими порциями (3-4 раза в день) инфузорию, зоопланктон, просеянный через плотное сито. Это способствует быстрому росту мальков.

1. Зрение.

Значение зрения не так велико у водных обитателей по сравнению с наземными.

Это связано, во-первых , с тем, что с увеличением глубины значительно снижается освещенность, во-вторых , очень часто рыбы вынуждены жить в условиях низкой прозрачности воды, в-третьих , водная среда позволяет им использовать другие органы чувств с гораздо большей эффективностью.

Почти у всех рыб глаза расположены с двух сторон, что обеспечивает им панорамное зрение в условиях отсутствия шеи и, как следствие, невозможности поворота головы без поворота туловища. Низкая эластичность хрусталика делает рыб близорукими, они не могут четко видеть на больших расстояниях.

Многие виды приспособили свое зрение к узкоспецифичным условиям обитания: рыбы коралловых рифов обладают не только цветным зрением, но также способны видеть в ультрафиолетовом спектре, некоторые рыбы, собирающие корм с поверхности воды, обладают глазами, разделенными на две половины: верхняя видит то, что происходит в воздухе, нижняя – под водой, у рыб обитающих в горных пещерах, глаза, вообще, редуцированы.

Такое тонкое обоняние развито у рыб благодаря тому, что обонятельная луковица занимает значительную часть их головного мозга.

Обоняние и вкус рыбы

Нос рыбы с четырьмя ноздрями. Но наиболее важны для рыб, конечно, чувства хеморецепции, а именно обоняние и вкус. Опять же, люди когда-то считали, что обонятельные рецепторы могут анализировать только газообразные вещества, и поэтому рыбы лишены способности чувствовать запахи. Как же они жестоко ошибались!

В нашем понимании рыбы нюхают носом. Парные обонятельные органы рыб имеют по два отверстия – для входа и выхода воды. Вот поэтому они имеют по две ноздри с каждой стороны – чтобы вода свободно циркулировала по полостям, выстланным чувствительными клетками. Вода, направляемая специальными клапанами, обычно просто втекает в нос во время движения. Но рыбы могут и пристально принюхиваться, расширяя и сужая обонятельные мешочки, шевеля ноздрями – совсем как охотничья собака, учуявшая добычу.
Воду через нос могут прогонять и специальные реснички, выстилающие полость мешочков. Обоняние играет разную роль в жизни определенных видов рыб. Есть некоторые представители, которые, охотясь или разыскивая пищу при ярком свете дня, полагаются в первую очередь на зрение, к примеру, щука. Сумеречные рыбы, в свою очередь, руководствуются преимущественно либо вкусом (карп, линь), либо нюхом (сом, угорь).

Что касается вкуса, то рыба отлично понимает что ест. Хотя многие из нас, до сих пор считают, что нюх и вкус у этих подводных обитателей – одно и то же чувство, поскольку жить приходится в воде. Но нельзя одно подменять другим: на вкус и запах у рыбы реагируют абсолютно разные рецепторы, за их восприятие отвечают абсолютно разные доли мозга. Обонятельные рецепторы – в носу, вкусовые – во рту, что тут непонятного? Тут все как у людей. Кроме того, вкусовые сосочки у некоторых рыб расположены еще и на губах, усиках, щеках, голове и даже на боках! А еще рыбы прекрасно различают вкус – горький или сладкий, или соленый.

Также наиважнейшим органом чувств у рыб, особенно при полной темноте, является боковая линия. Это полноценный орган, реагирующий на малейшие колебания воды. С его помощью хищник чувствует шевеление жертвы в траве, а жертва – осторожное движение подкрадывающегося хищника; рыба ощущает и мощное течение, и легкий шепот волн, бьющих в берег, хлесткие удары ветра по поверхности озера и веселые капли грибного дождика. Кстати, боковой линией хищник ощущает и колебания рыболовных приманок, причем в очень мутной воде, даже тех из них, которые практически не имеют собственной игры, те же поролоновые приманки.

В голове у рыб имеется образование, именуемое лабиринтом. Это два перепончатых мешочка с отростками, заключенные в хрящевую капсулу. Верхняя часть конструкции отвечает за равновесие, нижняя – за слух. Вот при помощи этого лабиринта, да еще в какой-то степени плавательного пузыря, они и улавливают звук. Рыбье ухо примитивное, гораздо примитивнее, чем у тех же кошек, однако оно замечательно различает, тон звука, тембр голоса и даже отдельные слова. Однако, несмотря на тонкость и «музыкальность», слух рыб мало помогает ориентироваться подо льдом, в темноте. Силу звука, тембр, тон – это пожалуйста, но что касается точного направления звука – увы! С определением направления звука у рыб почему-то возникают проблемы. Только если источник звука где-то рядом.

Зрение рыб

Закройте один глаз! Теперь откройте и закройте другой. Что вы видели? Практически одно и то же – и правым и левым глазом, ведь обоими глазами вы смотрите вперед. Теперь представьте, что то же самое проделает рыба. Закроет правый глаз – увидит то, что находится с левой стороны от нее, закроет левый – увидит то, что с правой. Но ведь рыба не может закрывать глаза – значит, она одновременно смотрит и вправо и влево! И видит совсем разные картины. Как же рыба в них разбирается?

Расположенные на разных сторонах головы, глаза рыбы приспособлены к монокулярному зрению, так как шаровидный хрусталик далеко сдвинут вперед, к самой роговице (рис.1), в глаз проникают лучи не только спереди, но также сверху и с боков, – и поэтому поле зрения рыбы весьма обширно!

Считая вместе с движением глаз, угол зрения охватывает по горизонтали 166-170°, по вертикали – около 150°; а бинокулярное зрение возможно только в очень ограниченном поле (приблизительно 130°). И именно в этом поле рыба ясно различает предметы. Положение глаз рыбы служит в этом отношении определяющим фактором. Если рыба хочет рассмотреть объект, она вынуждена быстро развернуться, чтобы он оказался в поле зрения обоих глаз – в узком конусообразной формы бинокулярном пространстве (рис.2).

Предметы, находящиеся над поверхностью воды, рыба способна видеть через так называемое «зрительное окно». Это окно равняется окружности на поверхности воды, образованной углом в 97,6° с вершиной, расположенной в точке нахождения рыбы (рис.3).

Через это окно рыбы видят от зенита до горизонта во всех направлениях. Это полусферическое зрительное поле содержит все предметы, находящиеся над плоскостью, касательной к поверхности воды у края окна. Но искажение и яркость предметов весьма различны. Предметы, находящиеся прямо над головой, кажутся больше (они воспринимаются рыбой почти без искажений), и следует помнить об этом при ловле пугливых рыб. По мере опускания предмета по меридиану воздушной полусферы к горизонту, его изображение будет уменьшаться как в ширину, так и в длину и в то же время искажаться, хотя линейное расстояние от рыбы до предмета неизменно. Предмет становится видимым более смутно в связи с тем, что лучи, образующие с поверхностью воды все меньший угол, сильно отражаются от поверхности и только частично попадают в глаз рыбе. Явление преломления света вызывает также расхождение между истинным и наблюдаемым местоположением предмета в пространстве. При этом наибольшее расхождение между ними будет при угле падения лучей света в 45°, уменьшаясь по мере приближения к 90°.

В отличие от прочих животных, у рыбы глаз имеет эллипсоидную форму и снабжен плоской роговицей. Преломляющая сила глаза зависит не только от кривизны роговицы и хрусталика, но и от свойств материала, из которого они состоят, а роговица у рыб, как и у человека, не способна в воде преломлять световые лучи.

В большинстве своем рыбы близоруки – они хорошо видят только на близком расстоянии – около 1 м, а дальше 10-12 м вообще ничего увидеть не могут. В сетчатке у костистых рыб имеются специальные воспринимающие элементы – колбочки и палочки. Причем у рыб дневных преобладают колбочки, а у добывающих пищу в сумерки и ночью – изобилуют палочки: так, у ночного налима насчитывается 260 палочек на той же площади, где у щуки имеется всего 18! На свету состояние сетчатки изменяется: колбочки выдвигаются к свету, и наоборот, в сумерки к свету сдвигаются палочки.

У рыб (как и у людей) различная концентрация световоспринимающих элементов приводит к тому, что они видят отчетливо только специально рассматриваемый предмет. Хищным рыбам, подстерегающим свою добычу, необходимо очень широкое поле зрения, чтобы хорошо видеть достаточно обширный участок, и им такое зрение не очень подходит. Однако и здесь природа нашла выход – световоспринимающие приборы глаза устроены так, что они способны передавать в мозг информацию не об интенсивности падающего на них света, а лишь о характере изменения освещенности. Как только произойдет хоть малейшее изменение освещенности палочек и колбочек, они немедленно телеграфируют об этом мозгу и ждут следующих изменений, чтобы дать следующую телеграмму. И так всю жизнь.

У большинства хищных рыб очень сильна двигательная пищевая реакция на движение объектов питания. Формами защиты рыб-жертв от рыб-хищников являются образование стай, неподвижность и т.д. Чтобы спастись от хищников, мирные рыбы должны издали увидеть приближающуюся опасность, поэтому малейшая, едва заметная подвижность крупных объектов, их силуэтов, теней и неясные мелькания хорошо воспринимаются этими рыбами и вызывают у них оборонительную реакцию. Так что во время рыбалки учитывайте эти особенности зрения нехищных рыб и постарайтесь своим страшным видом и не менее страшной тенью их не распугать. Кстати, именно эта четко выраженная защитная реакция на тень лежит в основе способа ловли кефали на рогожку.

Когда вы ловите на блесну, живца или другую двигающуюся приманку, учитывайте еще один важный фактор. Восприятие движений рыбами можно измерить в так называемых оптических моментах, которые характеризуются способностью рыб воспринимать прерывистость света. Оптический момент человека равен 1/18-1/24 с. Это значит, что, когда в зрительном поле человека проходит 18-24 одинаковых предмета в секунду, они сливаются вместе, принимая вид неподвижной линии. По мере уменьшения этой скорости последовательно движущиеся предметы воспринимаются сначала как мелькание, а затем как отдельные перемещающиеся предметы. Ихтиологи определяют оптические моменты с помощью специальной оптомоторной установки. Например, у черноморских рыб, а также леща и окуня они вдвое меньше, чем у человека (1/57-1/67 с), это означает, что по сравнению с человеком рыбы способны воспринимать вдвое более быстрые движения. У пресноводных: гольяна, линя, карася, толстолобика, щуки и верховки оптический момент примерно вдвое больший (1/18-1/27 с). Такое разнообразие оптических моментов у рыб связано, по-видимому, с различным восприятием движений. Небольшие величины оптических моментов позволяют некоторым «зрительным рыбам» успешно питаться подвижными объектами и избегать своих врагов. Любой движущийся предмет, размеры которого меньше или равны величине рыбы, являются зрительным пищевым сигналом, а движущийся предмет большего размера – зрительным оборонительным сигналом. Практически все рыбы реагируют на движущуюся тень, но восприятие движений и характер ответных реакций зависят от образа жизни рыб. С этим связана более грубая способность восприятия движений у пресноводных малоподвижных рыб – карася и толстолобика, питающихся неподвижными и малоподвижными объектами. Именно небольшими оптическими моментами можно объяснить, почему при ловле с катеров или спиннингом крючки остаются пустыми – рыбы или не замечают проносящуюся на большой скорости приманку, или она действует на них отпугивающе, а вы так старались!

Читайте также:  Катер Волга (проект 343, 343МЕ): технические характеристики, отзывы

Конечно, калькулятор и компьютер на рыбалку брать не надо, лучше внимательнее присмотреться к тому, как и чем питаются рыбы.

Оказывается, рыбьи глаза способны идентифицировать большинство геометрических фигур. На выбор рыбой пищевых приманок значительное влияние оказывает их форма. Ихтиологами применялись приманки примерно одинакового размера следующих форм: шар, конус, треугольник, квадрат, параллелепипед, червеобразная, звезда и т.д. Все предлагаемые формы, за исключением звезды, воспринимались рыбами положительно. Вероятно, необычность формы звезды их отпугивает, так как даже очень голодные рыбы избегали хватать ее.

А воспринимают ли рыбы цвет? Прежде считали, что различение цветов в воде невозможно. Но еще в середине XX в. Карл Фриш успешно вырабатывал условные рефлексы пескаря на определенный цвет, давая корм всегда в красной мисочке с одновременным выкладыванием пустых черной, серой и белой мисок. Очень скоро пескари научились подплывать прямо к красной миске. Было доказано, что для цветового зрения рыбам служат колбочки.

Эксперименты по исследованию цветового зрения у рыб были продолжены многими ихтиологами и проводятся до сих пор. Шименц установил, что рыбы воспринимают ультрафиолетовые лучи как цветовые, отличая их от прочих. Если вспомнить, что ультрафиолет проникает глубже других лучей, то представление о полной темноте глубин до 1500 м не будет правильным. Кстати, Гертер дрессировал рыб не только на разный цвет, но и на определенную форму, и даже на буквы R и L.

Но это все ученые. А что же говорят рыболовы? Например, насадку с красным червем окуни берут охотнее, чем с белым, а белугу, наоборот, привлекает белый цвет. Раньше на Каспийском море существовал браконьерский лов белуги «на каладу». На большие крючки насаживались куски белой клеенки в форме треугольника. Возможно, что белуга принимает насадку за белую ракушку и берет ее. Издавна рыболовы окрашивают свои сети в малозаметные для рыб цвета.

К сожалению, на наличие цветового зрения исследованы на сегодняшний день не все виды рыб, но точно известно, что цвета различают речная минога, мойва, треска, пикша, сайда, полосатая зубатка, подкаменщик, камбала-ерш, кефаль, хамса, ставрида, морской и речной налим, барабулька, лещ, щука, речной окунь, золотой карась, линь, сазан, речной угорь, ушастый окунь, гольян и некоторые другие рыбы. Еще было установлено, что рыбы, выращенные на разных кормах, предпочитают разные цвета пищи.

Кстати, не забывайте, что рыбы, очутившиеся на берегу, не утрачивают способности видеть. Угорь переползает из одного водоема в другой. Выброшенные на берег лосось или щука свои движения направляют так, чтобы снова очутиться в водоеме. Так что будьте аккуратны и не разбрасывайте рыб вдоль берега, а то добыча вам только хвостом махнет!

В большинстве своем рыбы близоруки – они хорошо видят только на близком расстоянии – около 1 м, а дальше 10-12 м вообще ничего увидеть не могут. В сетчатке у костистых рыб имеются специальные воспринимающие элементы – колбочки и палочки. Причем у рыб дневных преобладают колбочки, а у добывающих пищу в сумерки и ночью – изобилуют палочки: так, у ночного налима насчитывается 260 палочек на той же площади, где у щуки имеется всего 18! На свету состояние сетчатки изменяется: колбочки выдвигаются к свету, и наоборот, в сумерки к свету сдвигаются палочки.

Дифференциация объектов

Выяснено, что рыбы могут различать и группировать объекты по внешним признакам (впрочем, здесь речь идет, скорее, об интеллектуальных кондициях, нежели о зрении рыб). В ходе пищевой дрессировки было выяснено, что они вполне способны отличить куб от пирамиды или шар от, например, цилиндра.

Выяснено также, что некоторые рыбки способны внешне различать членов своей группы (сельдь, окунь и так далее), а узнавать хищника «в лицо» и вовсе необходимо для выживания. Кстати говоря, некоторые тропические рыбки выбирают партнеров раз и на всю жизнь: они способны узнать их из тысяч себе подобных.

Как правило, все объекты, что видит рыба, сразу же классифицируются в ее мозгу и попадают в определенную категорию. Незначимые объекты отсекаются, остальные подразделяются на потенциально опасные (вызывающие настороженность либо немедленное бегство) и привлекательные (связанные с пищей, совместным «проживанием» либо размножением).

Вывод: идеальный вариант для рыболова – быть отнесенным к группе нейтральных, не представляющих опасности, объектов. То есть, не стоит выделяться на фоне окружающей визуальной и звуковой среды.

Недвижимые объекты рыба воспринимает хуже – это вам расскажет любой спиннингист. Именно активность потенциальной добычи вынуждает хищника на атаку. В данном случае важно все: и блеск чешуи, и траектория движения, и прочие визуальные эффекты. Для их усиления хороши и дополнительные звуковые эффекты. Этим объясняется успех охоты на судака со всяческими «погремушками», привлекательность воблеров с «чавкающими» эффектами, широкое применение «квока» для охоты на сома.

Зрение рыбы – как видит рыба?

Главная » Материалы » Заметки » | Дата: 06.08.2014 | Просмотров: 36237 | Комментариев: 1

Как видят рыбы? Видят ли они нас? И кто мы для них? Инопланетяне, для которых обитатели подводного мира только продукт питания, или дружественные пришельцы, изучающие их неведомый и загадочный мир. Жизнь подводных обитателей полна чудесных и удивительных тайн.

Роль зрения для подводных животных чрезвычайно важна. С его помощью, как и с помощью других чувств (обоняния, осязания, слуха) рыбы получают информацию об окружающей среде, а также обеспечивают контакт между особями своего вида. Зрение определяет и пищевую активность рыб. У хищных он имеет одну цель -найти добычу и спрятаться от более сильного обитателя моря, чтобы избежать нападения и снова ринуться в поисках менее защищенных и слабых особей. А у беззащитных травоядных рыб нет ничего более важного, чем уйти от хищника и затаиться в укромном месте.

Оптические свойства воды не позволяют животному видеть далеко. Хрусталик у рыб не может менять форму и приспосабливать зрение к расстоянию. Острота его зависит от прозрачности воды. Хорошо рыбы могут видеть в прозрачной воде не более чем на расстоянии в 1,5-2 метра, однако различают предметы в пределах 12-15 метров.

Лучше видят хищные рыбы, живущие в проточной прозрачной воде (форель, хариус, жерех). Так как глаза у рыб расположены по бокам головы и на некотором возвышении над поверхностью тела, угол зрения у них очень велик и, не поворачиваясь, они могут видеть каждым глазом не только спереди, но и по сторонам -до 1700 по горизонтали и около 1500 по вертикали.

Акула-молот из-за странной формы головы отчетливо видит во всех направлениях: не только то, что происходит перед ней, но также и вертикально – выше и ниже, сбоку и сзади.

В мутной и малопрозрачной воде рыбам позволяет ориентироваться второе зрение – боковая линия, уникальнейший аппарат, который выполняет функцию своеобразного радара, позволяющего улавливать малейшие колебания воды. Глаза у рыб лишены век, и они постоянно открыты. Морская вода омывает их и очищает от посторонних примесей.

А теперь снова вернемся к вопросу, видят ли нас рыбы. Его особенно часто задают рыболовы-любители. Не совсем хорошо, но рыбы могут видеть и надводный мир. По закону преломления световых лучей они сравнительно отчетливо видят без искажения предметы, находящиеся прямо у них над головой, например шлюпку или птицу, пролетающую над водой.

Наклонно падающие лучи преломляются. И чем острее угол и ниже предмет, тем более искаженным он кажется рыбе. Например, рыболов, стоящий на берегу, виден рыбе достаточно хорошо. Но если он присядет, рыба практически не видит его, особенно в неспокойную погоду.

При лове кефали подъемным заводом рыба, попавшая в сетную ловушку, прекрасно видит стенку, преградившую ей путь, и стремится уйти, пытаясь перепрыгнуть через нее. Иногда крупные кефали проводят первоначальную рекогносцировку, незначительно выпрыгивая из воды, оценивая высоту стенки, и только затем делают мощный прыжок.

Оказавшись не в своей среде, на берегу, рыбы не утрачивают способности ориентации. Например, угорь спокойно переползает из одного водоема в другой. Да и попробуйте выбросить живую, только что пойманную крупную рыбу на берег: она сделает все, чтобы оказаться в родной стихии. Рыбы могут не только видеть, но и запоминать увиденное.

Удивительный случай произошел у берегов Пуэрто-Рико. Крупная акула-мако была подстрелена из охотничьего гарпунного ружья. Сделав рывок в сторону моря и освободившись от стрелы, она ринулась к берегу. К изумлению присутствующих, она пыталась схватить незадачливого охотника, стоявшего на берегу, не обращая внимания на находившихся рядом людей.

А у некоторых рыб глаза специально приспособлены для наблюдения не только в воде, но и в воздухе. Анаблепс-рыба – четырехглазка, обитающая в Амазонке. Глаза у нее разделены на верхнюю и нижнюю камеры, снабженные специальной оптикой. Верхняя часть глаза приспособлена для наблюдения в воздухе, нижняя – в воде. Эта рыба прекрасно видит и комарика в воздухе, и маленького рачка в воде.

Хищные рыбы видят намного лучше травоядных. Зоркое зрение им необходимо при выслеживании и преследовании жертв. Особенность зрительного аппарата некоторых рыб позволяет им расчленить движение ускользающей добычи на отдельные фазы и угадать ее направление и скорость, что позволяет молниеносным броском поймать быструю и проворную жертву. Мелкие стайные рыбы видят значительно хуже.

Исследованиями подтверждено, что рыбы различают даже форму предмета, квадрат отличают от треугольника, а куб от пирамиды, чего не могут даже некоторые наземные животные.

Рыбы различают цвет. Особенно обитающие в поверхностных слоях воды, куда хорошо проникают солнечные лучи. Это уже давно доказано многочисленными экспериментами и подтверждается их богатой окраской тела с различными цветовыми оттенками, особенно в период нереста. А рыбьи невесты более благосклонно относятся к самцу с яркой и пестрой окраской – принимают все-таки по одежке.

Но кто знает, чем еще руководствуются рыбьи самки при выборе партнера для продолжения рода. Многие виды рыб знают в «лицо» выбранных им «мужей» для совместной жизни и не позволяют чужаку вторгнуться в их жизнь и разбить семейное счастье.

Цветовое зрение позволяет рыбам приспосабливаться к среде для защиты от хищников. Например, рыбы, обитающие на светлом фунте, имеют светлую окраску, а живущие среди водорослей – полосатую камуфляжную одежду.

Ну а некоторые рыбы, такие как камбала, меняют окраску буквально на ходу в зависимости от цвета грунта и так сливаются с ним, что хищник, проплывая над затаившейся рыбой, не замечает ее. Однако ослепшие рыбы, в том числе и камбала, не меняют свой цвет в зависимости от изменения цвета грунта, и зрительное восприятие в этом случае остается основополагающим.

Зорче других дневные рыбы-хищники. К ним относятся щука, форель, хариус. К ночным – судак, лещ, сом. У них в сетчатой оболочке глаза находятся светочувствительные элементы, воспринимающие очень слабые световые лучи, которые позволяют различать в темное время суток тени жертвы.

Рыбы приспособились ориентироваться и в постоянном мраке – в глубоководной части океана. Глаза, как правило, большие, имеющие телескопическое строение, позволяющие им улавливать малейшие проблески света, исходящие обычно от самих же глубоководных обитателей.

У многих из них имеются своеобразные световые органы-«фонарики», встроенные для удобства в какую либо часть тела, например в рот. Голодная рыба широко открывает пасть, и лампочка автоматически загорается. Мелкие рыбешки, привлеченные светом, заплывают в рот, и хитрая хищница тут же его закрывает. У некоторых глубоководных рыб «горят» удлиненные отростки, исходящие из головы, как антенны, воспринимающие голоса других подводных жителей – «своих» или «чужих».

А другие сияют целиком, словно елочные новогодние игрушки, в свете горящих разноцветных гирлянд. Исследователи, опустившиеся в батискафе на большую глубину, в кромешное царство тьмы, были изумлены открывшимся перед ними чудесным красочным миром. Сверкающие призраки проплывали перед ними, переливаясь многоцветьем.

Какая красота прячется от человеческого взора в бесконечных глубинах океана! Хочется, чтобы человек для подводных жителей был лишь миролюбивым пришельцем, изучающим этот таинственный мир.

Владимир КОРКОШ, ихтиолог, журналист (Керчь).

Если вы хотите выложить эту статью на ваш сайт или блог, то это разрешается лишь при наличии активной и индексируемой обратной ссылки на источник.

Оптические свойства воды не позволяют животному видеть далеко. Хрусталик у рыб не может менять форму и приспосабливать зрение к расстоянию. Острота его зависит от прозрачности воды. Хорошо рыбы могут видеть в прозрачной воде не более чем на расстоянии в 1,5-2 метра, однако различают предметы в пределах 12-15 метров.

Флуоресценция потрясающее свойство

Обычные цвета отражают свет только с определенной длинной волны, флуоресцентные же цвета светятся очень ярко если на них падает обычный свет и кажется, в большинстве случаев, при одинаковом освещении под водой, флуоресцентные цвета обладают лучшей видимостью нежели обычные. Каждый раз, когда мне приходится ловить в темной воде, я предпочитаю флуоресцентные приманки. Они также являются прекрасным выбором при ловле на очень больших глубинах.

Не только флуоресценция! Имейте в виду, что в воде содержится большое количество частиц, которые оказывают влияние на поглощение света в воде. Я узнал, что растворенные органические вещества, фитопланктон и взвешенные твердые частицы значительно влияют на абсорбцию света. По большей части в наших водоемах обычный желтый и зеленые цвета обладают лучшей по сравнению с другими цветами видимостью в летнее время, поскольку в воде находится большое количество органики. Возможно, этим объясняется резкая смена предпочтений в цвете приманок у наших хищников осенью. В этот время года наиболее уловистыми становятся приманки розового и оранжевого цветов.

  • Чем чище и прозрачнее вода, в которой вы рыбачите, тем больше возможный выбор цветов приманки. Только рыба определит, какой цвет ей нравится больше. На ярком солнце я обычно начинаю рыбалку с приманок относительно темных расцветок и сине-фиолетовых цветов.
  • Естественные цвета приманок, которые выглядят как настоящая добыча, являются хорошим выбором в прозрачных и мелких водоемах при хорошем освещении.
  • Чем ниже становится уровень освещенности и глубже ведется рыбалка, тем меньше становится выбор цветовой гаммы. На первый план выходят черный, белый и флуоресцентные цвета.
  • Цвет воды также является хорошим индикатором для выбора цвета приманки. Ярко-голубой, к примеру, наверняка указывает на то, что синяя приманка окажется удачной. Вода цвета кофе – коричневый, медный, оранжевый цвета. В мутных, непрозрачных водах выбор следует остановить на флуоресцентных приманках.
  • При низком уровне освещения большую значимость получает контрастность цветов, нежели идеальный выбор самого цвета. В таких условиях следует остановить свой выбор на черном, белом и флуоресцентных цветах.

Как почувствовать себя на рыбалке, будто рыба в воде? С точки ЗРЕНИЯ рыбы.

Как рыба видит под водой? Довольно интересная тема.

Сетчатка глаза у рыбы имеет схожее с глазом человека строение.

Но при этом рыба видит намного хуже, в ее поле зрения попадают предметы на небольшом расстоянии и в довольно узком, конусообразном секторе обзора.

Рыба видит обоими глазами в разных направлениях одновременно, но чтобы сфокусировать взгляд на конкретном предмете, рыбе необходимо, так сказать, повернуться к нему «лицом» — чтобы этот предмет оказался в поле зрения обоих глаз.

У рыб зрение цветное. Опытным путем удалось выяснить, что некоторые виды рыб способны различать более двадцати цветов. У некоторых рыб есть свои «любимые» цвета и этим пользуются опытные рыболовы, используя приманки соответствующих расцветок. Такими приманками могут быть цветные блесны и воблеры. Например, красная или салатовая ниточка, пучок из разноцветных ниток, пластиковая вставочка на самой блесне в виде чешуйки-лепестка.

Некоторые рыболовы-любители, знающие о пристрастиях рыб к определенным цветам, сами изготавливают металлические блесны и красят их в соответствующий цвет. Красят, естественно, не краской (!), а очень специальными методами. Вот тут-то и пригождается знание химии, о котором я упоминал в предыдущей своей статье.

Хищные рыбы видят лучше. Мирные же рыбы, такие как ряпушка или уклейка, имеют довольно слабое зрение и плохо различают цвета в воде. Но зрение, как таковое, не является для жизни рыбы самым важным. Рыба имеет целый ряд «приспособлений», чтобы чувствовать себя комфортно под водой и «видеть» не только глазами, но и почти всем телом. Рыба, потерявшая зрение или с ослабленным зрением из-за глазных паразитов, вовсе не обречена, и у нее не меньше шансов на выживание, чем у полностью здоровых особей.

Рыба может ориентироваться под водой по запахам. Дело в том, что ноздри у рыб устроены так, что вода, проходя через них, попадает на специальные нервные клетки, воспринимающие запахи. Так же, как и способность видеть, способность улавливать запахи у разных рыб разная. Та же щука, например, плохо различает запахи, но зато имеет отличное зрение.

Говоря о запахах, стоит упомянуть о том, что, как и к цветам, у рыб есть предпочтения и отвращение к определенным запахам. Рыба не любит, например, запах табака, пота, бензина (масла, мазута…), не любит запаха животных, питающихся рыбой, не любит запахи некоторых растений. Это обстоятельство также необходимо учитывать на рыбалке. Для того, чтобы не отпугнуть рыбу, предварительно стоит вымыть руки и не курить во время контакта с прикормками и наживкой.

Для перемещения и охоты под водой рыбой используется боковая линия. Я знал, «как это работает», а вот за термином пришлось забраться в специализированную литературу. В общих чертах принцип действия выгладит так: вдоль туловища у рыбы расположен главный канал, который соприкасается с водой через отверстия в чешуйках. Чувствительные нервные клетки боковой линии воспринимают информацию о давлении воды и ее температуре, после чего передают информацию в головной мозг рыбы.

Звук в воде распространяется раз в пять быстрее, чем в воздухе, поэтому рыбе порой трудно определить направление звука. Но даже слепая рыба, благодаря улавливаемым колебаниям способна «безаварийно» перемещаться в воде, умело обходя неподвижные предметы. Подвижные предметы рыбе заметить проще. Боковая линия помогает ей определять направление течения воды, местонахождение добычи, поддерживать связь со своими соплеменниками.

Читайте также:  Головные уборы для рыбаков

У рыбы нет ушей в привычном для нас понимании этого слова. У нее есть внутреннее ухо, которое получает информацию о звуках. Плавательный пузырь улавливает звуковые колебания в воде, затем эти колебания передаются на внутреннее ухо рыбы посредством мелких косточек скелета, а затем уже в головной мозг. Внутреннее ухо «слышит», в основном, колебания низкой частоты, а высокочастотные звуки рыба улавливает все той же боковой линией.

Зная о том, как рыба «видит», можно под нее подстраиваться и в значительной мере хитрить при рыбной ловле!

У рыбы нет ушей в привычном для нас понимании этого слова. У нее есть внутреннее ухо, которое получает информацию о звуках. Плавательный пузырь улавливает звуковые колебания в воде, затем эти колебания передаются на внутреннее ухо рыбы посредством мелких косточек скелета, а затем уже в головной мозг. Внутреннее ухо «слышит», в основном, колебания низкой частоты, а высокочастотные звуки рыба улавливает все той же боковой линией.

Цветовое зрение рыб

Для изготовления светящихся приманок особых знаний и умений не нужно. Обычно используются составы ФКП-3 и ФКП-03-К, которые имеются в продаже в магазинах. Одну часть ФКП-3 или ФКП-03-К смешивают с двумя-тремя частями нитролака или клея БФ-2 или БФ-6.Блесна покрывают белым нитролаком, предварительно сделав на них углубления. Также окрашивают и цевье крючка, затем его закрывают белым кембриком, после чего эти места покрывают светящимся составом и клеем с лаком.

Зрение рыб. Как видят рыбы

Органическая жизнь – часть природы. Поэтому все живые организмы на Земле существуют в тесном взаимодействии с окружающей средой. Система органической и неорганической жизни на Земле достаточно устойчива в значительной степени благодаря способности живых организмов чутко реагировать на малейшие изменения внешней среды. Смысл этой реакции заключается в том, чтобы поддерживать состояние организма максимально адекватным окружающей среде. Если функциональных возможностей организма для приспособления к изменению среды не хватает, то для выживания потребуются органические изменения, которые в случае их безусловной пользы для вида закрепляются генетически. Именно так исторически возникали важнейшие ароморфозы, на основе которых осуществлялось видообразование.

Таким образом, своевременная рецепция изменений параметр ров внешней (и внутренней) среды – жизненно важная функция любого индивидуума, а также вида в целом.

Поэтому раздражимость является одним из основных признаков живого, обязательным свойством всех живых (растительных и животных) клеток. Благодаря ей все живые существа объединяются с окружающим миром как бы в единое информационное поле, нарушение которого пагубно отражается на индивидууме популяции, виде и биосе в целом. Раздражимость является унифицированной реакцией клеток и тканей организма на изменения внешней среды. На организм из внешней среды действуют слишком много раздражителей, отличающихся качественно и количественно. Поэтому реактивность организма должна быть избирательной.

Рыбы воспринимают большое количество сигналов из внешней среды: от ионных до механических. В физиологии стимулы внешней среды принято делить на благоприятные и неблагоприятные (табл. 2.1). Строго говоря, это деление с точки зрения эволюционного развития нелепо, так как любая информация из внешней среды животному необходима для своевременной адекватной рН акции. Это тот случай, когда справедливо высказывание “проинформирован – значит защищен”.

Внешние стимулы, воспринимаемые рыбами

Электромагнитная и тепловая энергия Свет

Тепло/холод Электричество Магнитная энергия

Механическая энергия Звук/вибрация

На большое значение факторов внешней среды для нормального функционирования животного организма указывал патриарх физиологии И. П. Павлов. В его “башне молчания” создавалась полнейшая изоляция животного от внешнего мира. В отсутствие внешних раздражителей у подопытных животных развивались психические патологии,

У рыб контакт с внешней средой еще более плотный, чем у высших позвоночных. Поэтому и контроль за изменениями во внешней среде у рыб должен быть более чутким. Этому способствует хорошо развитый рецепторный аппарат. Рыбы реагируют на видимый человеком свет, электромагнитные поля, гравитационное поле Земли, низко- и высокочастотные колебания среды, атмосферное давление, образование волн на поверхности водоема, химический состав воды, изменение скорости потока воды, ее температуры, механическое раздражение. Практически все известные человеку физико-химические и биотические изменения, возникающие в водоеме, рецептируются рыбой посредством хорошо развитых сенсорных систем.

Мощный афферентный поток, исходящий от органов зрения, акустико-латеральной системы, органов химической рецепции, механорецепторов, проприорецепторов, электрорецепторов, магниторецепторов, терморецепторов, органов рецепции давления, стекается в центральную нервную систему, где подвергается анализу, на основании которого принимается оптимальное решение метаболического или этологического характера. Такой мониторинг за изменениями окружающей среды позволяет рыбе с наибольшей биологической эффективностью адаптировать свой обмен веществ или запустить локомоторные реакции с целью удовлетворения индивидуальных физиологических потребностей и в конечном счете биологических потребностей стаи, популяции, вида в целом, распознавать наиболее важные сигналы из внешнего мира и адекватно на них реагировать. Другая информация из внешнего мира, менее значимая на данный момент, либо вообще не воспринимается, либо как бы принимается к сведению, но не сопровождается сомато-вегетативными реакциями животных.

Рис. 2.1. Общая схема восприятия раздражителей из окружающей среды рыбами

Для восприятия и анализа наиболее важных сведений из внешней среды эволюция снабдила животных высокоспециализированными структурами – сенсорными системами, которые обладают высокой чувствительностью и избирательной реактивности по отношению к свету, звуку, химическому составу и температуре окружающей среды, электромагнитному полю, изменению гравитации, давления, Сенсорная система включает в себя рецепторный аппарат (глаз, ухо, ампулы Лоренцини и др.) и анализирующий аппарат в составе центральной нервной системы (рис. 2.1).

Обращает на себя внимание то, что сенсорные органы у рыб не так четко дифференцированы по функциям, как у высших позвоночных. Например, у рыб трудно назвать орган слуха. Экспериментально установлено, что рыбы реагируют на звук. Но за восприятие колебаний воды у рыбы отвечают несколько органов: боковая линия, лабиринт, плавательный пузырь, а у пластинчатожаберных еще и особые образования – ампулы Лоренцини на голове и окончаниях лицевого нерва. Более того, термин “органы чувств” применительно к рыбам зачастую лишен первоначального смысла, так как сенсорная информация может и не поступать в центральную нервную систему. В этом случае она не подвергается чувственной оценке, следовательно, и структуры, отвечающие за эту рецепцию факторов внешней среды, нельзя называть органами чувств.

Тем не менее сенсорные системы рыб обеспечивают надежную связь между водной средой и организмом рыбы. Тот факт, что при отсутствии больших полушарий мозга (и тем более кортикальных структур) рыбы проявляют эмоциональные реакции на действие раздражителей из внешней среды, за формирование которых у рыб отвечает лимбическая система, оправдывает применение термина “сенсорные” (чувственные) системы при изучении физиологии рыб.

Под зрением принято понимать способность к рецепции электромагнитного излучения определенного (воспринимаемого глазом человека) спектра (рис. 2.2.). В ряду сенсорных органов рыб органам зрения принадлежит особая роль. Свет ввиду своей высокой скорости и прямолинейности распространения обеспечивает животное уникальной информацией. Органы зрения информируют животное одновременно о месте расположения, контурах, величине, подвижности или неподвижности объекта, направлении движения и его удаленности от животного. Источником света является Солнце. Все жизненные ритмы рыб прямо или опосредованно связаны с цикличностью солнечной активности. Поэтому фоторецепция- это и пусковой механизм биологических циклов. Экспериментально установлено, то видимый для рыб спектр электромагнитного излучения лежит в той же зоне, что и у высших позвоночных. Однако водная среда определенным образом изменяет диапазон восприятия электромагнитного излучения. Так, инфракрасные лучи (ИК) не проникают в воду, поэтому не воспринимаются глазом рыб.

Рис. 2.2. Место видимого света в спектре электромагнитных излучений

Ультрафиолетовые лучи (УФ) также рыбами не воспринимаются, хотя в свое время экспериментально удавалось выработать условный рефлекс у некоторых видов на этот тип излучений. Впоследствии было установлено, что глаз рыбы не способен к восприятию ультрафиолетовых лучей. Однако они могут создавать эффект флюоресценции различных органических и неорганических частиц в воде, на что рыбы и реагируют.

Будучи непрозрачными телами, рыбы создают в воде характерные оптические поля благодаря способности рассеивать света воде. Важную роль здесь играет и форма тела рыбы. Уплощение тела в вертикальной плоскости уменьшает оптическое поле для наблюдателя, располагающегося ниже рыбы. Горизонтальное уплощение, наоборот, увеличивает оптическое поле рыбы и делает ее более заметной для обитателей нижних горизонтов водоема. Для большинства пелагических рыб характерны округлые формы дорсальной и латеральных поверхностей тела. Их маскировка обеспечивается неодинаковым расположением отражающих пластин и, следовательно, более или менее равномерным рассеиванием света в разных направлениях.

Рассеивание света возникает благодаря особым оптическим свойствам как наружных покровов рыб, так и среды их обитания. В разных водоемах при различной их освещенности (характер облачности, расположение солнца относительно горизонта, сезон года) оптическое поле одной и той же особи будет иметь разные характеристики (рис. 2.3). Имеет значение и местоположение наблюдателя.

Отражающая поверхность рыб формируется прежде всего, структурой их кожи. В наружных слоях кожи рыб располагаются кристаллы гуанина и гипоксината, которые имеют вид тонких блестящих пластин – своеобразных микроскопических зеркал обладающих высокой отражательной способностью. Эти миниатюрные зеркала не только отражают свет с определенной длиной волны, но и производят его поляризацию. Благодаря этим кожным структурам рыбы имеют серебристую окраску тела.

Под и над отражательными пластинами гуанина и гипоксината располагается большое количество меланофоров и иридоцитов – структур, отвечающих за цветовую окраску тела рыбы. В результате взаимодействия отражающих пластин и пигментации кожи возникает специфический оптический эффект. Именно поэтому субъективная оценка окраски рыб бывает столь неоднозначной. Данное явление хорошо известно аквариумистам, которые для демонстрации эффектной цветовой гаммы рыб используют источники света с разными характеристиками; устанавливают их под разными углами по отношению к наблюдаемому объекту, применяют светоотражающие и светопоглощающие ширмы, грунты и прочее оборудование аквариума.

Таким образом, задача аквариумиста прямо противоположна той, что стоит перед рыбой в естественной среде обитания. Аквариумист, демонстрируя рыб на выставке, создает максимальное оптическое поле рыбы. В природных условиях рыба миниминизирует свое оптическое поле, так как у пелагической рыбы другая биологическая задача – стать наименее заметной для хищника.

Рис. 2.3. Оптическое поле рыбы при различных условиях: а – влияние солнечного света и толщи воды; б и в – влияние расположения наблюдателя. Интенсивность отраженного света (R) характеризует длина стрелки

В случае если стратегия самозащиты рыбы иная (напугать противника, предупредить о своей ядовитости), окраска рыбы может быть яркой, а сама рыба заметна издалека. Подобная стратегия Распространена в биоценозах коралловых рифов.

Иногда отражающие пластины и органы пигментации тела выполняют еще одну функцию – коммуникативную.

Так, у тропических стайных рыб, например голубых и красных неонов, “неоновая” полоса и яркая красно-голубая окраска тела служат для быстрого распознавания членов стаи в мутных воя притоков реки Амазонки. В других случаях (бойцовая рыбка) яркая окраска тела сами, служит для привлечения самки и запугивания соперника.

Цветовое зрение. Для рыб характерно цветовое зрение. Однако цвета рыбы воспринимают не в таких красках, как человек. Водная среда может быть сильно пигментирована за счет планктонных организмов или неорганических веществ. Таким образом, вода выступает в качестве светового фильтра. Кроме того, водная поверхность производит поляризацию света, что также приводит к искажению цветовой гаммы. Наконец, особенности морфологу зрительного анализатора рыб предполагают особое восприятие цветов.

Экспериментально показано, что ганглионарный слой глаза рыб по-своему анализирует возникающий в фоточувствительных клетках потенциал действия. Цвет объекта формируется в результате двух процессов: суммирования основных цветов с одной стороны и вычитания с другой стороны (рис. 2.4). В формировании цветовой палитры участвуют и структуры головного мозга, например зрительные бугры среднего мозга.

К. Фриш методом условных рефлексов доказал способной! пескаря, гольяна, колюшки и других рыб различать кормушки, окрашенные в различные цвета.

Рис. 2.4. Спектральный состав видимого рыбами света

Цветовая чувствительность глаза рыб утрачивается при уменьшении общей освещенности объекта до 1 лк и менее.

Свет как внешний раздражитель и, следовательно, зрение имеет неодинаковое значение для разных видов рыб. Планктонофаги и пелагические рыбы значительно зависят от света. При их искусственном ослеплении они утрачивают способность активно питаться.

Рыбы-планктонофаги имеют хорошо развитую зрительную систему, у них крупные глаза, большой зрачок, сложно организованная ретина и хорошо развитые отделы головного мозга, отвечающие за формирование зрительных образов (прежде всего средний мозг).

Активность таких видов рыб, как уклея, верховка, плотва, вобла связана с освещенностью водоема. При изменении освещенности от 1 до 500 лк пищевая активность рыб не меняется. Критическим уровнем освещенности является 0,1 лк, при котором рыбы прекращают активный поиск зоопланктона и поедают рачков только при непосредственном контакте с ними.

Для донных рыб (бентософагов) свет и зрение имеют меньшее значение. Так, при ослеплении осетровых их пищевая активность практически не менялась. Глаза у них мелкие, ретина чаше всего однослойная, средний мозг менее развит. Пищевая активность рыб наблюдается и при хорошей освещенности, и при полной темноте. Многие хищные рыбы открытых вод при поиске и захвате добычи также полагаются исключительно на зрение, в связи с чем их пищевая активность проявляется только днем. У таких хищников, как окунь, судак, хорошо развит зрительный анализатор. Но среди хищных рыб есть и придонные виды, а также виды с пиком активности в ночное время. Понятно, что у этих хищников зрение развито хуже, второстепенно или вообще не имеет значения, по крайней мере, при поиске пиши. Оптическая рецепция глаза основана на способности сетчатки поглощать достаточное количество световых квантов за счет разрушения светочувствительного пигмента. Установлено, что в сетчатке глаза большинства рыб с хорошим зрением присутствуют четыре фоточувствительных пигмента: родопсин с максимумом поглощения света при длине волны около 500 нм; порфиропсин с максимумом поглощения света при длине волны 522нм; йодопсин с максимумом поглощения света при длине волны 562 нм; цианопсин с максимумом поглощения света при дайне волны 62 нм. Измерения показали, что для рецепции синего света необходима структура, поглощающая излучение с длиной волны оком 450 нм, для восприятия зеленого цвета – соответственно около 525 нм и красного – около 555 нм. Исходя из этого, можно предположить, что у рыб могут быть проблемы с восприятием сине- фиолетовой части видимого спектра и более широкие возможности рецепции оранжево-красной части.

Однако практика показывает, что шкалы световосприятия рык зависят от их местообитания (химического состава, цвета воды и прозрачности). У морских рыб шкала световосприятия сдвинута в коротковолновую часть спектра, у пресноводных рыб – в длинноволновую.

Характер световосприятия зависит и от глубины обитаний рыбы, так как по мере увеличения глубины происходит резкое усиление поглощения водной средой красных и УФ-лучей. На больших глубинах преобладают лучи из синей части спектра. У донных обитателей (скаты, камбала) и глубоководных рыб воспринимаемый спектр сужен до 410-650 нм, у рыб из поверхностных слоев расширен до 400-750 нм.

В основе спектральной чувствительности глаза рыб лежит на сколько явлений. Во-первых, в ретине глаза рыб обнаружены все четыре известных у хордовых животных светочувствительных пигмента, хотя для цветового зрения достаточно и двух.

Во-вторых, все колбочки сетчатки глаза рыб (клетки, обеспечивающие цветовое восприятие) имеют в своем составе жировые капли, представляющие собой раствор каротиноидов. И прежде чем световой луч попадет на фоточувствительный пигмент, подвергается фильтрации раствором каротиноидов.

Теоретически с такими морфологическими и физиолого-биохимическими особенностями глаза рыбы могут иметь очень насыщенные цветом зрительные образы. По крайней мере, механизм цветового восприятия у высших наземных позвоночных (включая человека) проще.

Среда обитания наложила отпечаток на функции и морфологию органов зрения рыб. Известно, что за восприятие света у рыбы отвечает не только глаз. Так, у круглоротых имеются светочувствительные клетки на коже. При помощи этих образований животные определяют силу источника света.

У всех рыб имеется эпифиз – структура в составе промежуточного мозга со специфическими функциями. Однако изначально это светочувствительный орган. У миноги он имеет вид пузырька и расположен на голове близко к коже, которая в этом месте прозрачна. Это, по существу, теменной глаз, при помощи которого минога довольно сносно ориентируется в воде – определяет силу и направление источника света.

Настоящий глаз, конечно, более совершенен и по строению и по функциям. Относительная величина глаз у рыб может колебаться в значительных пределах в зависимости от образа жизни и места обитания.

Морской окунь, судак, щука и многие другие рыбы имеют сравнительно крупные глаза. А глаза различных сомов, пескаря, вьюна относительно размеров их тела небольшие.

У морских глубоководных рыб, приспособившихся к жизни при очень низкой освещенности, глаза достигают огромных размеров. Диаметр их глаза может составлять 30-50 % длины головы (Polyipnus sp., Bathymacrops sp., Mycthophium sp.). Однако у других глубоководных видов рыб глаза могут быть редуцированы или вообще отсутствовать (Idiacanthus sp., Ipnops sp.). Для пещерных рыб также характерно большое разнообразие в строении глаза: от хорошо развитого до полностью редуцированного.

На глубине 800-900 м рыбы и другие водные животные широко применяют такое явление, как люминесценция, для облегчения зрительной коммуникации (табл. 2.2).

2.2. Характеристика свечения некоторых морских организмов

Под зрением принято понимать способность к рецепции электромагнитного излучения определенного (воспринимаемого глазом человека) спектра (рис. 2.2.). В ряду сенсорных органов рыб органам зрения принадлежит особая роль. Свет ввиду своей высокой скорости и прямолинейности распространения обеспечивает животное уникальной информацией. Органы зрения информируют животное одновременно о месте расположения, контурах, величине, подвижности или неподвижности объекта, направлении движения и его удаленности от животного. Источником света является Солнце. Все жизненные ритмы рыб прямо или опосредованно связаны с цикличностью солнечной активности. Поэтому фоторецепция- это и пусковой механизм биологических циклов. Экспериментально установлено, то видимый для рыб спектр электромагнитного излучения лежит в той же зоне, что и у высших позвоночных. Однако водная среда определенным образом изменяет диапазон восприятия электромагнитного излучения. Так, инфракрасные лучи (ИК) не проникают в воду, поэтому не воспринимаются глазом рыб.

Рыба как индикаторы загрязнения

Большинство рыб достаточно хорошо видят вокруг себя, особенно спереди и сбоку; они прекрасно различают мелкие предметы в ближнем плане — метров до 1—1,5. А такие рыбы, как форель, хариус, жерех, щука, в состоянии обнаруживать движущиеся в воде объекты с довольно приличного расстояния. Но часто именно такие рыбы нетерпимо относятся к гамутнённости или загрязнённости воды, вплоть до того, что являются для нас индикаторами загрязнения.

Вода — более плотная среда, чем воздух. Поэтому лучи света в ней распространяются медленнее, рассеиваясь в толще. Согласно новейшим научным данным, слой воды толщиной в сто метров считается уже совершенно непрозрачным. Общая реакция рыбы на прямой свет и освещенность проявляется по-разному.

В зимнее время, например, большинство рыб не любят «засвечиваться» в местах яркого освещения. Когда сверлят во льду лунки, видимо, рыба прекрасно видит эти множественные снопы света от лунок в прозрачной, отстоявшейся подо льдом воде. Это её пугает — и не спроста! — и она уходит от незадачливых рыбаков в сторону от таких мест.

Добавить комментарий