Дыхательная система у рыб

ОРГАНЫ ДЫХАНИЯ РЫБ

Основными органами дыхания взрослых рыб являются жабры (эктодермального происхождения).

Дыхательная система у рыб

Эволюция рыб привела к появлению жаберного аппарата, увеличению дыхательной поверхности жабр, а отклонение от основной линии развития – к выработке приспособлений для использования кислорода воздуха. Большинство рыб дышит растворенным в воде кислородом, но есть виды, приспособившиеся частично и к воздушному дыханию (двоякодышащие, прыгун, змееголов и др. ).

Основные органы дыхания. Основным органом извлечения кислорода из воды являются жабры.

Форма жабр разнообразна в зависимости от видовой принадлежности и подвижности: это или мешочки со складочками (у рыбообразных), или пластинки, лепестки, пучки слизистой, имеющие богатую сеть капилляров. Все эти приспособления направлены на создание наибольшей поверхности при наименьшем объёме. дыхательный система рыба жаберный

У костистых рыб жаберный аппарат состоит из пяти жаберных дуг, располагающихся в жаберной полости и прикрытых жаберной крышкой. Четыре дуги на внешней выпуклой стороне имеют по два ряда жаберных лепестков, поддерживаемых опорными хрящами.

Таблица 1 Дыхательная поверхность жабр (по Строганову, 1962)

Дыхательная поверхность жабр

Жаберные лепестки покрыты тонкими складками – лепесточками. В них и происходит газообмен. К основанию жаберных лепестков подходит приносящая жаберная артерия, ее капилляры пронизывают лепесточки; из них окисленная (артериальная)кровь по выносящей жаберной артерии попадает в корень аорты. Число лепесточков варьирует; на1 мм жаберного лепестка их приходится: у щуки – 15, камбалы – 28, окуня – 36. В результате полезная дыхательная поверхность жабр очень велика (табл. 1).

Более активные рыбы имеют относительно большую поверхность жабр; у окуня она почти в 2,5 раза больше, чем у камбалы.

Общая схема механизма дыхания у высших рыб представляется в следующем виде (рис.). При вдохе рот открывается, жаберные дуги отходят в стороны, жаберные крышки наружным давлением плотно прижимаются к голове и закрывают жаберные щели. Вследствие уменьшения давления вода всасывается в жаберную полость, омывая жаберные лепестки. При выдохе рот закрывается, жаберные дуги и жаберные крышки сближаются, давление в жаберной полости увеличивается, жаберные щели открываются и вода выжимается через них наружу. При плавании рыбы ток воды может создаваться за счет движения с открытым ртом.

Рис 1. Механизм дыхания взрослой рыбы: А – вдох; Б – выдох (по Никольскому, 1974)

В капиллярах жаберных лепесточков из воды поглощается кислород (он связывается гемоглобином крови) и выделяются двуокись углерода, аммиак, мочевина. Большую роль играют жабры и в водно-солевом обмене, регулируя поглощение или выделение воды и солей. Замечательны приспособления для дыхания у рыб в эмбриональный период развития – у зародышей и личинок, когда жаберный аппарат ещё не сформирован, а кровеносная система уже функционирует. В это время органами дыхания служат: а) поверхность тела и система кровеносных сосудов Кювьеровы протоки, вены спинного и хвостового плавников, подкишечная вена, сеть капилляров на желточном мешке, голове, плавниковой кайме и жаберной крышке; б) наружные жабры (рис. 18). Это временные, специфические личиночные образования, исчезающие после образования дефинитивных органов дыхания. Чем хуже условия дыхания эмбрионов и личинок, тем сильнее развивается кровеносная система или наружные жабры. Поэтому у рыб, близких в систематическом отношении, но различающихся экологией нереста, степень развития личиночных органов дыхания различна.

Рис.2 Эмбриональные органы дыхания рыб: А – пелагическая рыба; Б – карп; В – вьюн (по Строганову, 1962): 1 – Кювьеровы протоки, 2 – нижняя хвостовая вена, 3 – сеть капилляров, 4 – наружные жабры

Дополнительные органы дыхания. К дополнительным приспособлениям, помогающим переносить неблагоприятные кислородные условия, относятся водное кожное дыхание, т. е. использование растворенного в воде кислорода при помощи кожи, и воздушное дыхание – использование воздуха при помощи плавательного пузыря, кишечника или через специальные добавочные органы (рис. 19).

Рис.3 Органы водного и воздушного дыхания у взрослых рыб (по Строганову, 1962): 1 – выпячивание в ротовой полости, 2 – наджаберный орган, 3, 4, 5 – отделы плавательного пузыря, 6 – выпячивание в желудке, 7 – участок поглощения кислорода в кишечнике, 8 – жабры

Форма жабр разнообразна в зависимости от видовой принадлежности и подвижности: это или мешочки со складочками (у рыбообразных), или пластинки, лепестки, пучки слизистой, имеющие богатую сеть капилляров. Все эти приспособления направлены на создание наибольшей поверхности при наименьшем объёме. дыхательный система рыба жаберный

239 Отзывов об Активаторе Клева FishHungry

Действительно ли Активатор Клева FishHungry Работает? Или это все Рекламные Уловки, чтобы Обмануть и Продать, как можно Больше?

У каждого вида рыб существует свой «минимум» содержания кислорода в воде. Если этот порог ниже, чем должен быть, рыбы становятся вялыми, неактивными и вовсе погибают (это так называемые заморы). Некоторые рыбы (карась и др.) при отсутствии кислорода в воде заглатывают и атмосферный воздух. В дыхательной функции, например, окуня может участвовать и плавательный пузырь, пронизанный сетью капиллярных сосудов. А вот у сома и линя есть дополнительное кожное дыхание. Обогащение воды кислородом происходит в основном из атмосферного воздуха и зависит от многих факторов: температуры воды, величины водоема, наличие ключей и родников, подземных вод, а также перемешивания различных слоев воды.

Дыхание рыб: как оно устроено?

Дыхательная система у рыб

ГЛАВА I
СТРОЕНИЕ И НЕКОТОРЫЕ ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ РЫБ

ДЫХАТЕЛЬНАЯ СИСТЕМА. ГАЗООБМЕН

Эволюция рыб привела к появлению жаберного аппарата, увеличению дыхательной поверхности жабр, а отклонение от основной линии развития – к выработке приспособлений для использования кислорода воздуха.

Большинство рыб дышит растворенным в воде кислородом, но есть виды, приспособившиеся частично и к воздушному дыханию (двоякодышащие, прыгун, змееголов и др.).

Основные органы дыхания. Основным органом извлечения кислорода из воды являются жабры.

Форма жабр разнообразна в зависимости от видовой принадлежности и подвижности: это или мешочки со складочками (у рыбообразных), или пластинки, лепестки, пучки слизистой, имеющие богатую сеть капилляров.

Все эти приспособления направлены на создание наибольшей поверхности при наименьшем объёме.

У костистых рыб жаберный аппарат состоит из пяти жаберных дуг, располагающихся в жаберной полости и прикрытых жаберной крышкой.

Четыре дуги на внешней выпуклой стороне имеют по два ряда жаберных лепестков, поддерживаемых опорными хрящами.

Таблица 1
Дыхательная поверхность жабр (по Строганову, 1962)

Виды рыб. Масса, г. Дыхательная поверхность жабр. см2. см2 / кг.
Серебряный карась. 10,0. 16,96. 1700.
Камбала. 135,0. 889,00. 6762,9.
Окунь. 73,0. 1173,8. 16752,1.

Жаберные лепестки покрыты тонкими складками – лепесточками. В них и происходит газообмен. К основанию жаберных лепестков подходит приносящая жаберная артерия, ее капилляры пронизывают лепесточки; из них окисленная (артериальная)кровь по выносящей жаберной артерии попадает в корень аорты. Число лепесточков варьирует; на1 мм жаберного лепестка их приходится: у щуки – 15, камбалы – 28, окуня – 36. В результате полезная дыхательная поверхность жабр очень велика (табл. 1).

Более активные рыбы имеют относительно большую поверхность жабр; у окуня она почти в 2,5 раза больше, чем у камбалы.

Общая схема механизма дыхания у высших рыб представляется в следующем виде (рис. 17). При вдохе рот открывается, жаберные дуги отходят в стороны, жаберные крышки наружным давлением плотно прижимаются к голове и закрывают жаберные щели. Вследствие уменьшения давления вода всасывается в жаберную полость, омывая жаберные лепестки. При выдохе рот закрывается, жаберные дуги и жаберные крышки сближаются, давление в жаберной полости увеличивается, жаберные щели открываются и вода выжимается через них наружу. При плавании рыбы ток воды может создаваться за счет движения с открытым ртом.

Рис. 17. Механизм дыхания взрослой рыбы
А – вдох; Б – выдох (по Никольскому, 1974)

В капиллярах жаберных лепесточков из воды поглощается кислород (он связывается гемоглобином крови) и выделяются двуокись углерода, аммиак, мочевина. Большую роль играют жабры и в водно-солевом обмене, регулируя поглощение или выделение воды и солей. Замечательны приспособления для дыхания у рыб в эмбриональный период развития – у зародышей и личинок, когда жаберный аппарат ещё не сформирован, а кровеносная система уже функционирует. В это время органами дыхания служат: а) поверхность тела и система кровеносных сосудов Кювьеровы протоки, вены спинного и хвостового плавников, подкишечная вена, сеть капилляров на желточном мешке, голове, плавниковой кайме и жаберной крышке; б) наружные жабры (рис. 18). Это временные, специфические личиночные образования, исчезающие после образования дефинитивных органов дыхания. Чем хуже условия дыхания эмбрионов и личинок, тем сильнее развивается кровеносная система или наружные жабры. Поэтому у рыб, близких в систематическом отношении, но различающихся экологией нереста, степень развития личиночных органов дыхания различна.

Рис. 18. Эмбриональные органы дыхания рыб
А – пелагическая рыба; Б – карп; В – вьюн (по Строганову, 1962):
1 – Кювьеровы протоки, 2 – нижняя хвостовая вена, 3 – сеть капилляров, 4 – наружные жабры

Дополнительные органы дыхания. К дополнительным приспособлениям, помогающим переносить неблагоприятные кислородные условия, относятся водное кожное дыхание, т. е. использование растворенного в воде кислорода при помощи кожи, и воздушное дыхание – использование воздуха при помощи плавательного пузыря, кишечника или через специальные добавочные органы (рис. 19).

Рис. 19. Органы водного и воздушного дыхания у взрослых рыб (по Строганову, 1962):
1 – выпячивание в ротовой полости, 2 – наджаберный орган, 3, 4, 5 – отделы плавательного пузыря, 6 – выпячивание в желудке, 7 – участок поглощения кислорода в кишечнике, 8 – жабры

Дыхание через кожу тела – одна из характерных особенностей водных животных. И хотя у рыб чешуя затрудняет дыхание поверхностью тела, у многих видов роль так называемого кожного дыхания велика, особенно в неблагоприятных условиях. По интенсивности кожного дыхания пресноводных рыб делят на три группы:

1. Рыбы, приспособившиеся жить в условиях сильного дефицита кислорода. Это рыбы, населяющие хорошо прогреваемые, с повышенным содержанием органических веществ водоемы, в которых часто наблюдается недостаток кислорода. У этих рыб доля кожного дыхания в общем дыхании достигает 17–22%, у отдельных особей –42–80%. Это карп, карась, сом, угорь, вьюн. При этом рыбы, у которых кожа имеет наибольшее значение в дыхании, лишены чешуи или она мелкая и не образует сплошного покрова. Например, у вьюна 63%кислорода поглощается кожей, 37% – жабрами; при выключении жабр через кожу потребляется до 85% кислорода, а остальная часть поступает через кишечник.

2. Рыбы, испытывающие меньший недостаток кислорода и попадающие в неблагоприятные условия реже. К ним относятся обитающие у дна, но в проточной воде, осетровые – стерлядь, осетр, севрюга. Интенсивность кожного дыхания у них составляет 9–12% от общего.

Читайте также:  Фаршированная щука рисом с добавлением различных ингредиентов

3. Рыбы, не попадающие в условия значительного дефицита кислорода, живущие в проточных или непроточных, но чистых, богатых кислородом водах. Интенсивность кожного дыхания не превышает 3,3–9% от общего. Это сиги, корюшка, окунь, ёрш.

Через кожу происходит также выделение углекислоты; так, у вьюна этим путем выделяется до 92% общего количества.

При извлечении кислорода из воздуха во влажной атмосфере участвует не только поверхность тела, но и жабры. Важное значение при этом имеет температура.

Наибольшей выживаемостью во влажной среде отличаются карась (11 сут.), линь (7 сут.), сазан (2 сут.), в то же время лещ, краснопёрка, уклея могут жить без воды всего несколько часов (при низкой температуре).

Вьюн и угорь могут в течение нескольких дней жить вне воды при условии сохранения влажности кожи и жабр; это позволяет угрю переползать даже из одного водоема в другой.

При перевозке живой рыбы без воды кожное дыхание почти целиком обеспечивает потребность организма в кислороде.

У некоторых рыб, живущих в неблагоприятных условиях, выработались приспособления для дыхания кислородом воздуха. К ним прежде всего относится способ, специфичный для рыб, не свойственный другим позвоночным, – дыхание при помощи кишечника. В стенках кишечника образуются скопления капилляров. Воздух, заглатываемый ртом, проходит через кишечник, и в этих местах кровь поглощает кислород и выделяет двуокись углерода, при этом из воздуха поглощается до 50% кислорода. Такой вид дыхания свойствен вьюновым, некоторым сомовым и карповым рыбам; значение его у разных рыб неодинаково. Например, у вьюна в условиях большого недостатка кислорода именно этот способ дыхания становится почти равным жаберному.

При заморах рыбы заглатывают ртом воздух; воздух аэрирует находящуюся в ротовой полости воду, которая проходит затем через жабры.

Другим способом использования атмосферного воздуха служит образование специальных добавочных органов, например лабиринтового у лабиринтовых рыб, наджаберного у змееголова и др.

Лабиринтовые рыбы имеют лабиринт – расширенный карманообразный участок жаберной полости, складчатые стенки которого пронизаны густой сетью капилляров, в которых происходит газообмен. Таким способом рыбы дышат кислородом атмосферы и могут находиться вне воды в течение нескольких дней (тропический окунь-ползун Anabas scandens выходит из воды и лазит по камням и деревьям; рис. 20).

Рис. 20. Добавочные органы дыхания рыб
Наджаберные органы анабаса (А) и змееголова (Б)
(по Никольскому, 1974)

У змееголова выпячивание глотки образует наджаберную полость, слизистая оболочка ее стенок снабжена густой сетью капилляров. Благодаря наличию наджаберного органа он дышит воздухом и может находиться на мелководье при 30°С. Для нормальной жизнедеятельности змееголову, как и ползуну, нужен и растворенный в воде кислород, и атмосферный. Однако во время зимовки в прудах, покрытых льдом (зимовалах), он атм;;осферным воздухом не пользуется, а дышит только жабрами и кожей.

Для использования кислорода воздуха служит рыбам и плавательный пузырь. Наибольшего развития как орган дыхания плавательный пузырь достигает у двоякодышащих рыб. Их ячеистый плавательный пузырь функционирует как легкое. При этом возникает ‛легочный круг‛ кровообращения.

Состав газов в плавательном пузыре определяется как содержанием их в водоеме, так и состоянием рыбы.

Подвижные и хищные рыбы имеют большой запас кислорода в плавательном пузыре, который расходуется организмом при бросках за добычей, когда поступление кислорода через органы дыхания оказывается недостаточным. В неблагоприятных кислородных условиях воздух плавательного пузыря у многих рыб используется для дыхания (в разной степени у разных видов).

Карп и сазан, которые не имеют каких-либо специальных приспособлений для использования атмосферного воздуха, при нахождении вне воды частично поглощают кислород из плавательного пузыря.

Осваивая различные водоемы, рыбы приспособились к жизни при разных газовых режимах. Наиболее требовательны к содержанию кислорода в воде лососевые, которым для нормальной жизнедеятельности нужна концентрация кислорода 4,4–7,0 мг/л; хариус, голавль, налим хорошо себя чувствуют при содержании в литре воды не менее 3,1 О2 мг/л, карповым обычно достаточно 1,9–2,5 мг/л. Каждому виду свойствен свой кислородный порог, т. е. минимальная концентрация кислорода, при которой рыба гибнет.

Форель начинает задыхаться при содержании кислорода 1,9 мг/л, судак и лещ погибают при 1,2 мг/л, плотва и краснопёрка – при 0,25–0,3 мг/л; для выращенных на естественной пище карпов-сеголетков кислородный порог отмечен при 0,07–0,25 мг/л, а для двухлетков – 0,01 – 0,03 мг/л.

Интенсивность дыхания определяется помимо видовой специфичности рядом биотических и абиотических факторов. Внутри одного вида она изменяется в зависимости от размера, возраста, подвижности, активности питания, пола, степени зрелости гонад, физико-химических факторов среды. По мере роста рыб активность окислительных, процессов в тканях уменьшается; созревание гонад, наоборот, вызывает увеличение потребления кислорода. Расход кислорода в организме самцов выше, чем у самок.

На ритм дыхания, кроме концентрации в воде кислорода, влияют содержание СО2, рН, температура и т. д. Например, при температуре10°С и содержании кислорода 4,7 мг/л форель совершает 60–70 дыхательных движений в минуту, а при 1,2 мг/л частота дыхания возрастает до 140–160; карп при 10°С дышит почти вдвое медленнее, чем форель (частота дыхательных движений 30–40 раз в минуту), зимой он совершает в минуту 3–4 и даже 1–2 дыхательных движения. Как и резкий недостаток кислорода, на рыб губительно действует чрезмерное перенасыщение им воды.

Отмечена гибель линей и карасей при насыщении воды кислородом до 150–200%: пузырьки газа покрывали жабры, были обнаружены под кожей, в органах, в артериях, кровь становилась пенистой; рыбы чувствовали себя плохо – дыхание их сначала учащалось, затем ослабевало, они выпрыгивали из воды и погибали в судорогах. Гибель годовиков карпа наблюдали после того, как в течение нескольких дней в пруду содержание кислорода достигало 200–240% насыщения. При этом зарегистрированы гиперемия и мраморный рисунок жабр, редкие дыхательные движения и медленные круговые или реже прямолинейные плавательные движения. Пересадка таких рыб в другой пруд не спасала их.

Инкубация икры в перенасыщенной кислородом воде приводит к сильному увеличению отхода и количества уродов.

Для нормального дыхания рыб очень важно содержание в воде СО2. При увеличении содержания свободной двуокиси углерода дыхание рыб становится невозможным, так как уменьшается способность гемоглобина крови связывать кислород, насыщение крови кислородом резко снижается и рыба задыхается. При высоком содержании СО2в атмосфере (1–5%) СО2 крови не может диффундировать наружу, а кровь не может принимать кислород даже из насыщенной кислородом воды.

НазадОглавлениеДалее

Дополнительные органы дыхания. К дополнительным приспособлениям, помогающим переносить неблагоприятные кислородные условия, относятся водное кожное дыхание, т. е. использование растворенного в воде кислорода при помощи кожи, и воздушное дыхание – использование воздуха при помощи плавательного пузыря, кишечника или через специальные добавочные органы (рис. 19).

Органы дыхания рыб

Жаберные щели, жабры и крышечный аппарат. Органы дыхания рыб тесно связаны со скелетом, стоят в ближайшем отношении к висцеральным дугам и крышечному аппарату. Органами дыхания служат жабры, функционирующие всю жизнь. Редко встречается у рыб иное дыхание, и в связи с ним развиваются тогда особые органы дыхания. В отношении развития органов дыхания рыбы стоят на более высокой ступени, чем Cyclostomata, а тем более — Amphioxus. У последнего нет жабр, есть лишь жаберные щели, выстланные ресничным эпителием. И функция их там не только дыхательная, по реснички эпителия вызывают ток воды, несущий пищу через рот в глотку. У Cyclostomata слизистая оболочка жаберных мешков сложена в складки, увеличивающие дыхательную поверхность. У рыб жаберные листки представляют поверхность гораздо большую, что увеличивает интенсивность кислородного обмена и показывает общую энергию организма, давая возможность более быстро двигаться со всеми вытекающими отсюда последствиями в борьбе за существование.
Жаберные щели образуются у рыб как парные выросты энтодермальной стенки глотки, навстречу которым растут впячивания эктодермы. Te и другие выпячивания встречаются, соединяются, и образуются жаберные щели. Число их больше у низших представителей класса, чем у высших. У Elasmobranchii их бывает от б до 7, причем 7 щелей имеются у Heptanchus, 6 — у Hexanchus и Ghlamydoselachus, представителей примитивной группы Notidani. У остальных селахий (Selachii) жаберных щелей 6. У Holocephali всего 4 жаберных щели. У костистых рыб (Teleostei) число жаберных дуг с жабрами 4. У пятой их нет, а иногда имеет место редукция и 4-й и 3-й жабры.
Первая жаберная щель находится между подъязычной дугой и первой жаберной. Впереди жаберных щелей, обычно позади глаза, у элазмобранхий находится еще отверстие, называемое брызгальцем (spiraculum), ведущее в глотку. Это отверстие лежит между небноквадратным хрящом (челюстной дугой) и hyomandibulare (гиoидной дугой), и у зародышей элазмобранхий па стенках ее сидят, как и в остальных щелях, жаберные листочки. Таким образом, щель эта является не чем иным, как первой жаберной щелью. Spiraculum у Osteichthyes обычно исчезает, но сохраняется у некоторых форм: у осетров (Acipenser), лопатоносов (Polyodon) и у Polypterus, в эмбриональном состоянии встречается и у некоторых Teleostei (Salmo). У Holostei (Amia и Lepidosteus), хотя и в закрытом состоянии, spiraculum встречается и у взрослых форм. У Chondrostei в spiraculum, как и у элазмобранхий, на передней степке имеются жаберные листочки, называемые «ложножаброй» (pseudobranchia), так как снабжается она не венозной, а артериальной кровью. Так как у современных высших рыб задние щели (дуги) подвергаются иногда редукции, у Cyclostomata число жаберных отверстий доходит до 14, у Ostracodermi число их также до 16, число жаберных щелей у примитивных акул доходит до 7, — то нужно думать, что число жаберных щелей у предков рыб было больше, чем у современных рыб. Ho так как пи у одной современной или ископаемой рыбы их не имеется более 7, то можно думать, что число их у древнейших рыб было 7 или 8, включая spiraculum. Большое число жаберных щелей у Amphioxus — явление вторичное, приспособление для усиления тока воды через глотку.
Жаберные щели разделяются межжаберными перегородками — септами, поддерживаемыми жаберными дугами с внутренней стороны. У элазмобранхий септы хорошо развиты и выстланы с обеих сторон глоточным эпителием, сложенным в складки. Ho выстилают жаберные складки межжаберные перегородки но до конца. Свободный край перегородки срастается с кожей, благодаря чему жаберные щели могут прикрываться краем предыдущей щели. На каждой септе находятся две «полужабры», вместе образующие целую жабру. На гиоидной дуге сидит одна полужабра на ее задней стороне, т е. в первой жаберной щели. В последней жаберной щели имеется полужабра лишь на передней стороне, т. е. на 4-й дуге, 5-я без жаберных листков. В брызгальце, как сказано, имеется «ложножабра».
У цельноголовых (Holocephali) межжаберные перегородки короче, чем у селахии, благодаря чему жаберные листки слегка выступают за внешние края септ. Этот процесс редукции септ идет дальше у Teleostomi (рис. 86); септы еще короче у Acipenser, и еще короче у Teleostei. У последних перегородка может и вовсе исчезать, и тогда жаберных мешков пли полостей, открывающихся наружу особыми отверстиями, уже не образуется, и на каждой стороне тела имеется одна жаберная полость, в которую торчат гребневидные жабры, полость, прикрытая снаружи костями жаберной крышки (operculum, suboperculum, interoperculum) и натянутой на лучах подьязычной кости (radii branchiostegi) мягкой перепонкой (membrana branchiostegalis). Из этой жаберной полocти имеется только один выход для воды. Края жаберной крышки оторочены упругой мембраной.

Читайте также:  Ловля форели на силиконовые приманки: виброхвосты, твистеры, силиконовые черви

Жаберные щели, жабры и крышечный аппарат. Органы дыхания рыб тесно связаны со скелетом, стоят в ближайшем отношении к висцеральным дугам и крышечному аппарату. Органами дыхания служат жабры, функционирующие всю жизнь. Редко встречается у рыб иное дыхание, и в связи с ним развиваются тогда особые органы дыхания. В отношении развития органов дыхания рыбы стоят на более высокой ступени, чем Cyclostomata, а тем более — Amphioxus. У последнего нет жабр, есть лишь жаберные щели, выстланные ресничным эпителием. И функция их там не только дыхательная, по реснички эпителия вызывают ток воды, несущий пищу через рот в глотку. У Cyclostomata слизистая оболочка жаберных мешков сложена в складки, увеличивающие дыхательную поверхность. У рыб жаберные листки представляют поверхность гораздо большую, что увеличивает интенсивность кислородного обмена и показывает общую энергию организма, давая возможность более быстро двигаться со всеми вытекающими отсюда последствиями в борьбе за существование.
Жаберные щели образуются у рыб как парные выросты энтодермальной стенки глотки, навстречу которым растут впячивания эктодермы. Te и другие выпячивания встречаются, соединяются, и образуются жаберные щели. Число их больше у низших представителей класса, чем у высших. У Elasmobranchii их бывает от б до 7, причем 7 щелей имеются у Heptanchus, 6 — у Hexanchus и Ghlamydoselachus, представителей примитивной группы Notidani. У остальных селахий (Selachii) жаберных щелей 6. У Holocephali всего 4 жаберных щели. У костистых рыб (Teleostei) число жаберных дуг с жабрами 4. У пятой их нет, а иногда имеет место редукция и 4-й и 3-й жабры.
Первая жаберная щель находится между подъязычной дугой и первой жаберной. Впереди жаберных щелей, обычно позади глаза, у элазмобранхий находится еще отверстие, называемое брызгальцем (spiraculum), ведущее в глотку. Это отверстие лежит между небноквадратным хрящом (челюстной дугой) и hyomandibulare (гиoидной дугой), и у зародышей элазмобранхий па стенках ее сидят, как и в остальных щелях, жаберные листочки. Таким образом, щель эта является не чем иным, как первой жаберной щелью. Spiraculum у Osteichthyes обычно исчезает, но сохраняется у некоторых форм: у осетров (Acipenser), лопатоносов (Polyodon) и у Polypterus, в эмбриональном состоянии встречается и у некоторых Teleostei (Salmo). У Holostei (Amia и Lepidosteus), хотя и в закрытом состоянии, spiraculum встречается и у взрослых форм. У Chondrostei в spiraculum, как и у элазмобранхий, на передней степке имеются жаберные листочки, называемые «ложножаброй» (pseudobranchia), так как снабжается она не венозной, а артериальной кровью. Так как у современных высших рыб задние щели (дуги) подвергаются иногда редукции, у Cyclostomata число жаберных отверстий доходит до 14, у Ostracodermi число их также до 16, число жаберных щелей у примитивных акул доходит до 7, — то нужно думать, что число жаберных щелей у предков рыб было больше, чем у современных рыб. Ho так как пи у одной современной или ископаемой рыбы их не имеется более 7, то можно думать, что число их у древнейших рыб было 7 или 8, включая spiraculum. Большое число жаберных щелей у Amphioxus — явление вторичное, приспособление для усиления тока воды через глотку.
Жаберные щели разделяются межжаберными перегородками — септами, поддерживаемыми жаберными дугами с внутренней стороны. У элазмобранхий септы хорошо развиты и выстланы с обеих сторон глоточным эпителием, сложенным в складки. Ho выстилают жаберные складки межжаберные перегородки но до конца. Свободный край перегородки срастается с кожей, благодаря чему жаберные щели могут прикрываться краем предыдущей щели. На каждой септе находятся две «полужабры», вместе образующие целую жабру. На гиоидной дуге сидит одна полужабра на ее задней стороне, т е. в первой жаберной щели. В последней жаберной щели имеется полужабра лишь на передней стороне, т. е. на 4-й дуге, 5-я без жаберных листков. В брызгальце, как сказано, имеется «ложножабра».
У цельноголовых (Holocephali) межжаберные перегородки короче, чем у селахии, благодаря чему жаберные листки слегка выступают за внешние края септ. Этот процесс редукции септ идет дальше у Teleostomi (рис. 86); септы еще короче у Acipenser, и еще короче у Teleostei. У последних перегородка может и вовсе исчезать, и тогда жаберных мешков пли полостей, открывающихся наружу особыми отверстиями, уже не образуется, и на каждой стороне тела имеется одна жаберная полость, в которую торчат гребневидные жабры, полость, прикрытая снаружи костями жаберной крышки (operculum, suboperculum, interoperculum) и натянутой на лучах подьязычной кости (radii branchiostegi) мягкой перепонкой (membrana branchiostegalis). Из этой жаберной полocти имеется только один выход для воды. Края жаберной крышки оторочены упругой мембраной.

Ароморфозы рыб

Рыбы отличаются от предшествующих эволюционных форм новыми, прогрессивными чертами строения, которые повысили их уровень организации. Давайте их перечислим.

    Появление челюстей и черепа

У рыб первая пара жаберных дуг видоизменяется в челюсти, с помощью которых становится возможным питание – захват, измельчение добычи. Появился череп – костное вместилище головного мозга и органов чувств, которое надежно защищает эти структуры нервной системы.

Образуются предшественники конечностей, плавники, парные придатки тела, обособленные от туловища и головы, приводимые в движение мускульной силой.

У рыб хорда редуцируется, на ее месте формируется позвоночник. У хрящевых рыб позвоночник в течение всей жизни имеет хрящевое строение, а у костных рыб позвоночник окостеневает: он представлен костной тканью.

Как и хрящевые, костные рыбы имеют один круг кровообращения. Сердце двухкамерное, состоит из одного предсердия и одного желудочка. Запомните, что в сердце у рыб кровь венозная. Она накачивается сердцем в жабры, где происходит ее насыщение кислородом, после чего кровь становится артериальной.

Особенности дыхания у рыб

Как известно, рыбы в своей подводной среде обитания дышат с помощью жабр. Вода, которую рыба поглощает через рот, пропускается рыбой через жаберные щели, освобождаясь от растворенного в ней кислорода.

Кислород же усваивается организмом рыбы очень эффективно, гораздо эффективнее, чем даже у наземных млекопитающих.

Дыхание рыб: как оно устроено?

Правда, не все рыбы дышат исключительно жабрами. Некоторые из них всасывают кислород сквозь кожу. Есть и такие рыбы, которые могут дышать даже на поверхности воды.

Легких у них нет, зато есть особенный орган — жаберный лабиринт. Он дает возможность рыбе дышать воздухом. Но есть один существенный минус: да, такая рыба может выжить и на суше, но постоянно находиться в воде она тоже не может, потому что, чтобы дышать, ей необходим воздух.

Любому живому существу, в том числе и рыбе, для осуществления жизнедеятельности кислород необходим. Он позволяет происходить в теле рыбы химическим реакциям по разложению органических веществ. В результате этих реакций высвобождается энергия, которая дает жизнь всему организму.

Большинство рыб дышит жабрами.

Как обеспечить достаточным кислородом аквариумных рыбок? В принципе кислород попадает в воду из соприкасающегося с ней воздуха. Можно активизировать этот процесс, искусственно создавая в воде волны, перекаты и пороги при помощи микрокомпрессора. Также растения, которыми обычно украшают аквариум, находятся в непрерывном процессе фотосинтеза, во время которого в воду выделяется кислород. Но минус в том, что в растения выделяют кислород только в дневное время, в ночное же они, как и все живые существа, его поглощают. Не нужно забывать, что кислород в аквариуме используется не только непосредственно для дыхания рыб, но и для разложения различных органических отходов. Так что регулярная чистка аквариума — это не только эстетическое мероприятие, но и полезная для самочувствия рыбок процедура.

Потребность в кислороде у рыб зависит от времени года.

Потребность рыб в кислороде может зависеть от их вида и габаритов, окружающей их температуры и даже от времени года за окном.

Особенно сильным фактором, оказывающим влияние на объем кислорода, содержащегося в воде аквариума, является ее температура. Все знают, что газ растворяется в воде тем хуже, чем выше ее температура. В принципе самым удовлетворительным количеством кислорода для большинства аквариумных рыб является около 0,60 миллилитров на сто грамм воды. Такое содержание кислорода возможно в воде, температура которой не превышает двадцати пяти градусов по Цельсию.

Чем выше температура воды, тем меньше в ней становится кислорода, тем больше его требуется рыбам. Поэтому такое устройство, как аквариумный компрессор, — частый гость в наших городских квартирах. Он позволяет вполне эффективно снабжать кислородом немалое количество рыб.

Количество необходимого объема воздуха напрямую зависит вида рыбы.

Все, конечно, зависит от вида рыбок, которых вы держите в своем аквариуме. Например, золотые рыбки свежий воздух любят особенно. А вот рыбки, естественная среда обитания которых — тропические водоемы, привыкли к теплу, высокой влажности и низкому содержанию кислорода в воде. Таким рыбкам микрокомпрессор в аквариуме не нужен. Вообще здесь подход индивидуальный: рыбам, привыкшим к водоемам с течением, быстро сменяющимися массами воды, свежий кислород необходим буквально, как воздух. А вот тем рыбкам, которые в природе живут в водоемах со стоячей водой, специальная аэрация аквариумной воды не требуется.

Некоторые рыбки всплывают на поверхность за порцией кислорода.

Часто говорят о том, что большое количество подводных растений способно насытить кислородом целый аквариум без всякой дополнительной аэрации. Но это не совсем так. Конечно, во всех зеленых растениях происходит процесс фотосинтеза, в результате которого в воду выделяется кислород. Но происходит это только при солнечном свете, то есть днем. Ночью же они начинают кислород поглощать. В этом случае при большом количестве растений в аквариуме рыбы могут там просто задохнуться. Так что аэрация воды все-таки необходима, пусть даже только ночная.

Читайте также:  Рыба с овощами в духовке

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.


Потребность рыб в кислороде может зависеть от их вида и габаритов, окружающей их температуры и даже от времени года за окном.

Двоякодышащие рыбы

Существуют рыбы, которые практически с одинаковым успехом могут усваивать кислород как из воды, так и воздуха. Вот их с полным правом можно назвать истинными чемпионами по выживанию, которых не напугаешь самыми суровыми условиями.

Двоякодышащие – одни из древнейших представителей ихтиофауны. Долгое время их считали вымершими, и только каких-то 150 лет тому назад ихтиологи сделали потрясающее открытие: в засушливых районах Африки и Австралии двоякодышащие живут и неплохо себя чувствуют!

Дело в том, что помимо жабр, двоякодышащие имеют и орган, по функциям аналогичный нашим легким. Доказано, что развился он из плавательного пузыря и в ходе эволюции обзавелся ячеистой структурой и сетью капилляров. Некоторые ученые полагают, что именно двоякодышащие рыбы предвосхитили выход животных из водной стихии на сушу.

Африканский протоптерус при высыхании водоема зарывается в ил, который, засыхая, образует вокруг его тела плотный кокон. Там протоптерус впадает в спячку, дыша атмосферным воздухом через отверстие в иле, причем проспать таким образом может несколько лет. Как только вода растворит кокон, протоптерус проснется и начнет вести приличествующий рыбе образ жизни. А вот рогозуб (австралийский эндемик) переживает засуху в локальных бочагах, дыша исключительно атмосферным воздухом – кислорода в таких лужах крайне мало.

Африканский протоптерус при высыхании водоема зарывается в ил, который, засыхая, образует вокруг его тела плотный кокон. Там протоптерус впадает в спячку, дыша атмосферным воздухом через отверстие в иле, причем проспать таким образом может несколько лет. Как только вода растворит кокон, протоптерус проснется и начнет вести приличествующий рыбе образ жизни. А вот рогозуб (австралийский эндемик) переживает засуху в локальных бочагах, дыша исключительно атмосферным воздухом – кислорода в таких лужах крайне мало.

Акваловер

Жаберная артерия, подходящая к основанию лепестков, подносит к ним окисленную (артериальную) кровь и обогащается кислородом (3 — сердце на рис.).

Внутреннее строение

Рыбы — наиболее древние первичноводные позвоночные. Они способны жить только в воде, большинство видов — хорошие пловцы. Класс рыб в процессе эволюции сформировался в водной среде, с ней связаны характерные особенности строения этих животных. Основной тип поступательного движения — боковые волнообразные движения благодаря сокращениям мускулатуры хвостового отдела или всего тела. Грудные и брюшные парные плавники выполняют функцию стабилизаторов, служат для подъёма и опускания тела, поворотов остановок, медленного плавного движения, сохранения равновесия. Непарные спинные и подхвостовой плавники действуют как киль, придавая телу рыбы устойчивость. Слизистый слой, на поверхности кожи, уменьшает трение и способствует быстрому движению, а также защищает тело от возбудителей бактериальных и грибковых заболеваний.

Кратко о рыбах

Для начала попробуем разобраться в том, что же это за существа, как и чем они живут, какую имеют взаимосвязь с человеком. Потому сейчас мы начинаем наш урок биологии, тема «Морские рыбы». Это надкласс позвоночных животных, которые обитают исключительно в водной среде. Характерной чертой является то, что все рыбы челюсторотные, а также обладают жабрами. Отметить стоит, что данные показатели характерны для каждого вида рыб, вне зависимости от размера и массы. В жизни человека данный подкласс играет экономически важную роль, так как большинство его представителей употребляются в пищу.

Считается также, что рыбы были на заре эволюции. Именно такие существа, которые могли обитать под водой, но еще не имели челюстей, когда-то были единственными жителями Земли. С тех пор вид эволюционировал, некоторые из них превратились в животных, некоторые остались под водой. Вот и весь урок биологии. Тема «Морские рыбы. Краткий экскурс в историю» рассмотрена. Наука, изучающая морские рыбы, носит название «ихтиология». Давайте теперь перейдем к изучению этих существ с более профессиональной точки зрения.


Дыхательная система костных рыб весьма эффективна в том плане, что они усваивают большую часть кислорода из воды, прошедшей через их жабры. Это важно, так как в воде содержится меньше кислорода, чем в воздухе.

1. Дыхательная система у рыб

Эволюция рыб привела к появлению жаберного аппарата, увеличению дыхательной поверхности жабр, а отклонение от основной линии развития – к выработке приспособлений для использования кислорода воздуха. Большинство рыб дышит растворенным в воде кислородом, но есть виды, приспособившиеся частично и к воздушному дыханию (двоякодышащие, прыгун, змееголов и др. ).

Основные органы дыхания. Основным органом извлечения кислорода из воды являются жабры.

Форма жабр разнообразна в зависимости от видовой принадлежности и подвижности: это или мешочки со складочками (у рыбообразных), или пластинки, лепестки, пучки слизистой, имеющие богатую сеть капилляров. Все эти приспособления направлены на создание наибольшей поверхности при наименьшем объёме. дыхательный система рыба жаберный

У костистых рыб жаберный аппарат состоит из пяти жаберных дуг, располагающихся в жаберной полости и прикрытых жаберной крышкой. Четыре дуги на внешней выпуклой стороне имеют по два ряда жаберных лепестков, поддерживаемых опорными хрящами.

Таблица 1 Дыхательная поверхность жабр (по Строганову, 1962)

Дыхательная поверхность жабр

Жаберные лепестки покрыты тонкими складками – лепесточками. В них и происходит газообмен. К основанию жаберных лепестков подходит приносящая жаберная артерия, ее капилляры пронизывают лепесточки; из них окисленная (артериальная)кровь по выносящей жаберной артерии попадает в корень аорты. Число лепесточков варьирует; на1 мм жаберного лепестка их приходится: у щуки – 15, камбалы – 28, окуня – 36. В результате полезная дыхательная поверхность жабр очень велика (табл. 1).

Более активные рыбы имеют относительно большую поверхность жабр; у окуня она почти в 2,5 раза больше, чем у камбалы.

Общая схема механизма дыхания у высших рыб представляется в следующем виде (рис.). При вдохе рот открывается, жаберные дуги отходят в стороны, жаберные крышки наружным давлением плотно прижимаются к голове и закрывают жаберные щели. Вследствие уменьшения давления вода всасывается в жаберную полость, омывая жаберные лепестки. При выдохе рот закрывается, жаберные дуги и жаберные крышки сближаются, давление в жаберной полости увеличивается, жаберные щели открываются и вода выжимается через них наружу. При плавании рыбы ток воды может создаваться за счет движения с открытым ртом.

Рис 1. Механизм дыхания взрослой рыбы: А – вдох; Б – выдох (по Никольскому, 1974)

В капиллярах жаберных лепесточков из воды поглощается кислород (он связывается гемоглобином крови) и выделяются двуокись углерода, аммиак, мочевина. Большую роль играют жабры и в водно-солевом обмене, регулируя поглощение или выделение воды и солей. Замечательны приспособления для дыхания у рыб в эмбриональный период развития – у зародышей и личинок, когда жаберный аппарат ещё не сформирован, а кровеносная система уже функционирует. В это время органами дыхания служат: а) поверхность тела и система кровеносных сосудов Кювьеровы протоки, вены спинного и хвостового плавников, подкишечная вена, сеть капилляров на желточном мешке, голове, плавниковой кайме и жаберной крышке; б) наружные жабры (рис. 18). Это временные, специфические личиночные образования, исчезающие после образования дефинитивных органов дыхания. Чем хуже условия дыхания эмбрионов и личинок, тем сильнее развивается кровеносная система или наружные жабры. Поэтому у рыб, близких в систематическом отношении, но различающихся экологией нереста, степень развития личиночных органов дыхания различна.

Рис.2 Эмбриональные органы дыхания рыб: А – пелагическая рыба; Б – карп; В – вьюн (по Строганову, 1962): 1 – Кювьеровы протоки, 2 – нижняя хвостовая вена, 3 – сеть капилляров, 4 – наружные жабры

Дополнительные органы дыхания. К дополнительным приспособлениям, помогающим переносить неблагоприятные кислородные условия, относятся водное кожное дыхание, т. е. использование растворенного в воде кислорода при помощи кожи, и воздушное дыхание – использование воздуха при помощи плавательного пузыря, кишечника или через специальные добавочные органы (рис. 19).

Рис.3 Органы водного и воздушного дыхания у взрослых рыб (по Строганову, 1962): 1 – выпячивание в ротовой полости, 2 – наджаберный орган, 3, 4, 5 – отделы плавательного пузыря, 6 – выпячивание в желудке, 7 – участок поглощения кислорода в кишечнике, 8 – жабры

Таблица 1 Дыхательная поверхность жабр (по Строганову, 1962)

восьмая. АНАТОМИЯ И ФИЗИОЛОГИЯ ОРГАНОВ ДЫХАНИЯ У РЫБ

Содержание темы. Органы дыхания у рыб. Жабры как централизованный орган для газообмена. Их устройство, наиболее выгодное для газообмена. Кровеносная система как распределитель газов по телу рыбы и как удаляющая отработанные газы наружу. Сущность дыхательного процесса. Значение кислорода воды для жизни рыбы и приспособления для изживания его недостатка в бассейне; добавочные органы дыхания, превращение плавательного пузыря в орган дыхания. Значение последнего процесса для понимания эволюции животного мира. Органы дыхания у мальков и личинок рыб. Контрольные вопросы.

Рис. 93. Продольный разрез передней части тела и головы миксины (из

Скелет

Осевой скелет образован позвоночным столбом и черепом. Позвоночник приходит на смену хорде в эмбриональном периоде. Между верхней и нижней дугами позвонков проходит спинной мозг. В туловищном отделе к позвонкам прикрепляются короткие рёбра.

Череп разделён на два отдела: мозговой и висцеральный. Висцеральный череп включает в себя челюсть, подъязычную дугу и жаберные дуги, на которых расположены жабры.

Конечности рыб – плавники. Парные плавники прикреплены к дугообразным хрящам, лежащим в мышцах тела, и образуют передний и задний пояса конечностей.

Так как зубы хрящевых рыб образуются из чешуи, они сменяются в течении жизни. За несколько лет акула может сменить до 20 000 зубов.

Выделительная система

В выведении продуктов метаболизма, поддержании постоянства внутренней среды организма и регуляции водно-солевого обмена у рыб участвуют почки, жабры и кишечник. Органами выделения являются первичные (туловищные) почки лентовидной формы, расположенные в спинной части полости тела вдоль позвоночника. Моча по мочеточникам поступает в мочевой пузырь, а затем выводится наружу через мочеиспускательный канал, имеющий самостоятельное отверстие. Основной продукт обмена у пресноводных рыб аммиак, а у морских – мочевина.

Иногда встречается живорождение (акулы, скаты), сопровождающееся внутренним оплодотворением и невысокой плодовитостью. Яйцеживорождение (гупии, молинезии, меченосцы) отличается от настоящего живорождения выметыванием икры с вполне сформированной личинкой.

Добавить комментарий